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Background
In his celebrated thesis  [34], Zwegers employed the so-called µ̂-function to provide an 
automorphic completion of the until then mysterious mock theta functions. The µ̂-func-
tion is a real-analytic Jacobi form of one modular and two elliptic variables. A remarkable 
fact was commented on by Zagier  [31]: The “two-variable” µ̂-function can be written as 
the sum of a meromorphic Jacobi form and a real-analytic Jacobi form that only depends 
on the difference of the two elliptic variables.a

where ζ is the Weierstrass ζ-function and θ is the Jacobi θ-function. The second term is 
the “one-variable” µ̂-function, which we denote, abusing notation, by the same letter as 
the original µ̂-function. One outcome of the present paper is a natural explanation for 
this behavior of µ̂. The construction of µ̂ can be naturally phrased in terms of indefinite 
theta series. We extend this construction to more general lattices.

µ̂(τ ,u, v) = ζ(τ ,u)− ζ(τ , v)− ζ(τ ,u− v)

θ(τ ,u− v)
+ µ̂(τ ,u− v),

Abstract 

It was shown in previous work that the one-variable µ̂- function defined by Zwegers 
(and Zagier) and his indefinite theta series attached to lattices of signature (r+1, 1) are 
both Heisenberg harmonic Maaß-Jacobi forms. We extend the concept of Heisenberg 
harmonicity to Maaß-Jacobi forms of arbitrary many elliptic variables, and produce 
indefinite theta series of “product type” for non-degenerate lattices of signature (r+s, s).  
We thus obtain a clean generalization of µ̂ to these negative definite lattices. From 
restrictions to torsion points of Heisenberg harmonic Maaß-Jacobi forms, we obtain 
harmonic weak Maaß forms of higher depth in the sense of Zagier and Zwegers. In 
particular, we explain the modular completion of some, so-called degenerate indefinite 
theta series in the context of higher depth mixed mock modular forms. The structure 
theory for Heisenberg harmonic Maaß-Jacobi forms developed in this paper also 
explains a curious splitting of Zwegers’s two-variable µ̂-function into the sum of a 
meromorphic Jacobi form and a one-variable Maaß-Jacobi form.
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Classical Jacobi forms were defined in Ref. [14] and have been applied in many con-
texts since then. In some cases, the generating functions of interesting arithmetic quan-
tities turn out to be Jacobi forms [15, 32]; in other cases, classical Jacobi forms and their 
generalizations have been used to understand the structure of modular forms of differ-
ent types. For example, Jacobi forms occur as Fourier–Jacobi coefficients of holomorphic 
and non-holomorphic Siegel modular forms—see [7, 18] for an explanation of how Fou-
rier–Jacobi coefficients can be obtained from the latter. Jacobi forms also serve as a tool 
to better understand elliptic modular forms, quasimodular forms [33], and mock mod-
ular forms. Quasimodular forms, for example, occur as Taylor coefficients of classical 
Jacobi forms. A more recent accomplishment that is based on Jacobi forms, and which 
is closely connected to the subject of this paper, is the findings by Zwegers [34]. He pro-
vided three different ways, all based on non-classical Jacobi forms, to understand mock 
modular forms—see [25] for details on the latter. First, he defined the µ̂-function, a real-
analytic Jacobi form which specializes at certain torsion points to automorphic comple-
tions of mock theta functions. Second, he defined indefinite theta series for lattices of 
signature (r − 1, 1), which are also real-analytic Jacobi forms. They can be employed in a 
similar way as the µ̂-function to understand mock theta functions. Third, Zwegers ana-
lyzed Fourier coefficients of meromorphic Jacobi forms, to obtain mock modular forms.

Motivated by this success of real-analytic Jacobi forms (defined in an ad hoc way), sev-
eral attempts were made to give a precise definition of real-analytic Jacobi forms and, 
more specifically, harmonic weak Maaß-Jacobi forms. In the past few years, several such 
definitions, all based on the Casimir operator for the extended real Jacobi group, were 
suggested by Berndt and Schmidt, Pitale, Bringmann and Richter, Conley and the author, 
and Bringmann, Richter and the author  [5, 7, 10, 11, 24]. To discuss these definitions, 
recall that Jacobi forms are functions φ : H× Cl → C, depending on a modular variable 
τ ∈ H ⊂ C in the Poincaré upper half plane and elliptic variables z ∈ Cl. The index of a 
Jacobi form is an l × l matrix. A Jacobi form is semi-holomorphic if it is holomorphic as 
a function of z. The Casimir operator is a certain invariant, central differential operator 
that annihilates constant functions.

Berndt and Schmidt, and Pitale gave definitions of real-analytic Jacobi forms that were 
motivated by representation theoretic ideas, therefore restricting themselves to func-
tions that satisfy a polynomial growth condition with respect to the modular variable. 
By their definition, a real-analytic Jacobi form is an eigenfunction of the Casimir opera-
tor. In addition, Berndt and Schmidt require a real-analytic Jacobi form to be an eigen-
function of another differential operator which is invariant, but not central, and which is 
similar to �H defined in Ref. [7]. This is elaborated on in more detail in  “Preliminaries”. 
Pitale then showed that it suffices to consider semi-holomorphic forms to study smooth 
vectors in autormorphic representations for the extended Jacobi group. This led him to 
require that Maaß-Jacobi forms be semi-holomorphic eigenfunctions of the Casimir 
operator.

The work by Bringmann and Richter introduced a new idea. Restricting to functions 
that are annihilated by the Casimir operator, they relaxed the growth condition, requir-
ing at most exponential growth, and called the Jacobi forms that arise this way harmonic 
Maaß-Jacobi forms. To distinguish them from the real analytic Jacobi forms mentioned 



Page 3 of 34Westerholt‑Raum. ﻿Mathematical Sciences  (2015) 2:12 

so far, we will call them harmonic weak Maaß-Jacobi forms. It is important to notice that 
functions that only satisfy a weak growth condition currently cannot be incorporated 
into a satisfactory representation theoretic framework. However, they gain importance 
by the tremendous amount of applications in which harmonic weak Maaß forms [2] and 
harmonic weak Maaß-Jacobi forms show up—see, for example,  [8, 12, 13]. Note that, 
even though Bringmann and Richter formally did not impose any further condition in a 
formal way, their work treats only the semi-holomorphic case.

The weak growth condition was used in Ref. [11] to give a definition of semi-holomor-
phic harmonic weak Maaß-Jacobi forms of the lattice index. In the context of Ref. [11], 
this type of Jacobi form is relevant because of its connection with Siegel modular forms 
of higher genus  [26]. In Section  3 of  [11], it was shown that the vanishing conditions 
with respect to analogs of the above �H, in this setting, lead to semi-holomorphic func-
tions, if the Jacobi index is not scalar. This is an important observation, which is treated 
in more detail in Proposition 3.6 of the present paper.

The later work  [7] focused on scalar Jacobi indices. When allowing certain kinds of 
singularities, the class of harmonic weak Maaß-Jacobi forms that are annihilated by �H 
is strictly larger than the class of semi-holomorphic harmonic weak Maaß-Jacobi forms. 
A complete structure theory of Heisenberg-harmonic (H-harmonic) Maaß-Jacobi forms 
with scalar Jacobi indices was built up. We restrict ourselves to reminding the reader 
that the one-variable µ̂-function is an H-harmonic Maaß-Jacobi form in the very sense 
of Ref. [6].

The definition of H‑harmonic Maaß‑Jacobi forms

As discussed above, the results on real-analytic Jacobi forms, so far, either restrict to the 
semi-holomorphic case or to the case of scalar Jacobi indices. The two-variable µ̂-function 
is neither semi-holomorphic, nor has a scalar Jacobi index. To study it as a real-analytic 
Jacobi form, we develop the theory of H-harmonic Maaß-Jacobi forms of arbitrary indi-
ces L that are lattices. To explain the definition, we recall in more detail the main result of 
Section 3 in [11]. Let LJH and RJH denote the lowering and raising operators with respect 
to the elliptic variables—explicit expressions are given in  “Preliminaries”. These are maps 
that assign to every b ∈ L⊗ R a differential operator, and we write LJH[b] and RJH[b] for 
the images under b. We call them the lowering and raising operator in the direction of b. 
In Ref. [11], it is shown that, if the rank of L exceeds 1 and L is non-degenerate, then any 
smooth function from the Jacobi upper half space H× (L⊗ C) to C that is annihilated 
by RJH[b] LJH[b] for all b ∈ L⊗ R is holomorphic in z. In other words, a coordinate inde-
pendent definition of H-harmonic Maaß-Jacobi forms leads to semi-holomorphic forms 
whenever the Jacobi index is not scalar. From the perspective taken in Ref. [11], coordi-
nate independence is a reasonable assumption, which holds automatically for Maaß-Jacobi 
forms that are obtained from real-analytic Siegel modular forms and orthogonal modular 
forms. The two-variable µ̂-function, however, is not semi-holomorphic. One is thus led to 
consider coordinate dependent H- harmonicity. Fixing a basis B of linear independent vec-
tors in L⊗ R, we consider Heisenberg harmonic functions with H- harmonicity B that, by 
definition, are annihilated by RJH[b] LJH[b] for all b ∈ B—see Definition 3.1. The basic the-
ory of H-harmonic Maaß-Jacobi forms is developed in “H-harmonic Maaß-Jacobi forms”.
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Indefinite theta series

It is natural to ask for examples of H-harmonic Maaß-Jacobi forms beyond Zwegers’s µ̂
-function. We construct theta series for some indefinite lattices, following closely the defi-
nition proposed in Ref. [34] in the case of signature (l+, 1).

Given a lattice L with bilinear form � ·, · �L of signature (l+, 1), Zwegers’s indefinite theta 
functions depend on a pair (c1, c2) of non-positive vectors in L⊗ R. They provide modu-
lar completions of

where for technical reasons we introduce some suitable b ∈ L⊗ R such that the sum 
converges. The tilde decorating the sum refers to signs and boundary terms that we sup-
press to present a clearer picture of the construction. The condition 〈c1, v〉L and 〈c2, v〉L 
on the right hand side can be interpreted as restricting summation to a cone in L⊗ R.

For arbitrary lattices, there are several possibilities to restrict summation to achieve 
convergence. Utilizing the intersection of cones that are defined by two vectors, each is 
the most straightforward one. Given a set C of pairs of vectors (c1, c2) that span mutually 
orthogonal spaces of L⊗ R, we set

If #C = l−, where (l+, l−) is the signature of L and if all c1, c2 are negative, then

converges. In “Indefinite theta series”, we provide their modular completion. As a special 
case, if we choose negative vectors c1 and isotropic vectors c2, we obtain H-harmonic 
Maaß-Jacobi forms for B = {c1 : (c1, c2) ∈ C}. Their image under the Heisenberg ξ
-operator, discussed in Proposition 3.4, is a skew theta series. It is attached to the majo-
rant of L that is defined by taking the negative of span B. In particular, there are plenty of 
preimages of the same skew theta series, which are distinguished by different choices of 
bases B of span B.

In case that for all c1, c2 ∈ L⊗Q, the intersection of L⊗Q with span{c1, c2} is two-
dimensional, the theta series  (1.1) can be written as a sum of products of theta series 
for lattices of signature (1, 1) and one for a positive definite lattice. For this reason, theta 
series of the kind that we treat are occasionally called theta series of the product type. 
Note that under these specific assumptions on C,  modular completions of (1.1) can be 
furnished by employing Zwegers’s indefinite theta series. We will elaborate on this in 
“Reduction to smaller lattices”.

∑

ν∈L

(
sgn�c1, ν�L − sgn�c2, ν�L

)
exp (L[ν]τ + �ν, b�L)

=
∑̃

ν ∈ L

sgn�c1, ν�L = −sgn�c2, ν�L

exp (L[ν]τ + �ν, b�L),

coneL(C) =
{
ν ∈ L : ∀(c1, c2) ∈ C : sgn�c1, ν�L = −sgn�c2, ν�L

}

=
⋂

(c1,c2)∈C

{
ν ∈ L : sgn�c1, ν�L = −sgn�c2, ν�L

}
.

(1.1)θ̃CL (τ , 0) =
∑̃

ν∈coneL(C)
exp (L[ν]τ + �ν, b�L)
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From a purely philosophical standpoint, one expects that indefinite theta series of 
product type should show up rather frequently—many counting problems feature 
degenerate cases. We give two examples, which one of the referees suggested mention-
ing. In their work on Torus knots, Hikami and Lovejoy encountered an indefinite theta 
series for which they could not provide a modular completion [17]. A concrete expres-
sion can be found in Theorem 5.6 of loc. cit. where the last sum runs over three variables, 
each restricted with respect to its sign. That is, the cone that appears in a corresponding 
indefinite theta series has three walls. If this theta series is degenerate, it should be possi-
ble to express that cone as a union or suitable intersection of cones defined by two pairs 
of walls as in  (1.1). Specifically, we expect that Hikami’s and Lovejoy’s theta series is, 
after multiplication with a definite theta series, of the form

with suitable c1, c2, c3. The question is whether cone =
⋃

C coneL(C) for a suitable collec-
tion of Cs as above.

Another example of possibly degenerate theta series can be found in the work of Lau 
and Zhou on open Gromov–Witten potentials [21]. Formulas (4.10) and (4.11) therein 
both feature sums over cones with three walls.

Theta‑like decompositions

Another foundation to our understanding of H-harmonic Maaß-Jacobi forms and indefi-
nite theta series are theta-like decompositions as in Ref. [6]. The theta-like decomposition 
introduced for Maaß-Jacobi forms of scalar Jacobi index in Ref. [6] provides a more flexible 
way to construct examples. We prove Theorem 5.2, which extends the theta-like decompo-
sition studied so far to the case of arbitrary Jacobi indices. Recall the statement in the case 
of scalar indices. An H-harmonic Maaß-Jacobi form φ of index −m < 0 can be written as

where hl are the components of a vector-valued elliptic modular form, µ̂m,l are functions 
depending only on m and l, and ψ is a meromorphic Jacobi form. In our setting, such a 
decomposition result must incorporate additional meromorphic terms. In that matter, 
it is interesting to note that Bringmann, Creutzig, Rolen, and Zwegers recently showed 
that the meromorphic term ψ also admits a decomposition, namely by means of partial 
theta functions, if the Jacobi index m is negative [1, 9].

A prototypical decomposition of a Jacobi form of index 
(
1 0
0 −m

)
, which can still be 

phrased in terms of Zwegers’s µ̂-function, is

where ψm,l are meromorphic Jacobi forms that depend on φ.
The µ̂-function by Zwegers has been one of the most prominent players in the field of 

real-analytic modular forms. It also appears in the theta-like decomposition, since its 
image under the Heisenberg ξ-operator, as shown in Ref. [6], is a unary theta series. We 

∑

ν∈cone
exp (L[ν]τ), where cone =

{
ν ∈ L : sgn�c1, ν�L = sgn�c2, ν�L = sgn�c3, ν�L

}

∑

l (mod 2m)

hl(τ ) µ̂m,l(τ , z)+ ψ(τ , z),

∑

l (mod 2m)

ψm,l(τ , z1) µ̂m,l(τ , z2)+ ψ(τ , z),
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generalize µ̂ by employing the previously constructed indefinite theta series. For a nega-
tive definite lattice L and an orthogonal basis B of L⊗ R, the images of our functions µ̂B

L 
under the Heisenberg ξ-operator are anti-holomorphic theta series attached to L.

Splittings of H‑harmonic Maaß‑Jacobi forms

Zwegers’s µ̂-function falls under Definition 3.1, and its splitting can be explained in the 
setting of H-harmonic Maaß-Jacobi forms. In “Non-trivial H-harmonicities are orthogo-
nal”, we prove that if L is degenerate, then any H-harmonic Maaß-Jacobi form must be a 
sum of meromorphic and anti-meromorphic functions on L0 ⊗ R, the totally isotropic 

part of L⊗ R. For example, in the case of Jacobi index L =
(
0 0
0 −m

)
, Proposition 3.9 and 

Theorem 5.2 imply that an H-harmonic Maaß-Jacobi form φ can be written as

for a meromorphic function ψ, anti-meromorphic and H-harmonic functions ψhol and 
φhol, and meromorphic and H-harmonic functions ψhol and φhol, respectively.

Restrictions to torsion points

In the spirit of, for example, [34], it is interesting to study the restrictions of H-harmonic 
Maaß-Jacobi forms to torsion points. In fact, most of the contemporary theory on mock 
theta functions is formulated in terms of such restrictions. In “Theta-like decompositions”, 
we describe their analytic properties. In particular, we connect H-harmonic Maaß-Jacobi 
forms with Zagier’s and Zwegers’s notion of harmonic weak Maaß forms of higher depth, 
or equivalently mixed mock modular forms of higher depth—see “Restrictions to torsion 
points” for a definition.b Let M[d]

k  denote the space of depth d harmonic weak Maaß forms. 
Then, for example, any H-harmonic Maaß-Jacobi form φ that is not singular at z = 0 gives

By restricting H-harmonic Maaß-Jacobi forms to torsion points, one obtains sums of 
products of harmonic weak Maaß forms. Such products cannot be characterized by dif-
ferential operators, a paucity which let emerge the approach of mixed mock modular 
forms. Our results reconcile in parts with the approach taken by geometers, who tend 
to focus on harmonic modular forms, and physicists, who often encounter products of 
harmonic weak Maaß forms and holomorphic modular forms as generating series. For 
example, characters of Kac-Moody Lie superalgebras  [19, 20] are typically not mock 
theta functions, but mixed mock modular forms, depending on the signature of the Lie 
superalgebra’s Cartan matrix.

We suggest studying which of the mixed mock modular forms that have been encoun-
tered so far can be obtained as “holomorphic parts” of restrictions of H-harmonic Maaß-
Jacobi forms to torsion points. Specifically, if there is, say, a counting problem with 
coefficients c(n) such that

φ(τ , (z1, z2)) = ψ(τ , (z1, z2))+ ψhol(τ , z1)φhol(τ , z2)+ ψhol(τ , z1)φhol(τ , z2)

φ(τ , 0) ∈ M
[d]
k .

∑

n

c(n) exp(2π i nτ )
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is a mixed mock modular form of higher depth, then we suggest trying to refine it in a 
natural way c(n) =

∑
r c(n, r) such that

is a “mock Jacobi form”. This has already been carried out in Ref. [4] for Kac–Wakimoto 
characters that were studied in Ref. [19]. An approach in the same spirit has also been 
helpful to investigate moments of partition counting functions [3], where Taylor expan-
sions of mock Jacobi forms occurred naturally.

Preliminaries
Lattices

A lattice is a free Z-module L together with an R-valued quadratic form L[ · ] on L. The 
rank of L will be denoted by l. We say that L is integral if L[ · ] takes values in Z. The asso-
ciated rational, real, and complex spaces are denoted by LQ = L⊗Q, LR = L⊗ R, and 
LC = L⊗ C, respectively. There is a bilinear form �z, z′�L = L[z + z′] − L[z] − L[z′] 
canonically attached to L. It extends to a linear form on LC (i.e., a form which is complex 
linear in both the first and second component), which we also denote by �·, ·�L.

A vector ν ∈ L is called isotropic if L[ν] = 0. The maximal totally isotropic subspace 
{ν ∈ L : ∀ν′ ∈ L : �ν, ν′�L = 0} will be denoted by L0, while its dimension is denoted 
by l0. We call L non-degenerate if l0 = 0. Writing (l+, l−) for the signature of L, where 
l+ and l− are the dimensions of maximal positive and negative definite subspaces, we 
therefore have l = l+ + l0 + l−. The abbreviation l± = l+ + l− will appear frequently. It 
is standard to call L positive or negative semi-definite if l− = 0 or l+ = 0, respectively. 
We say that L is positive or negative definite, if l+ = l or l− = l. A totally isotropic lattice 
satisfies definition l0 = l.

Fixing an ordered basis for L, we can identify L with a Gram 
matrix 2m = 2mL ∈ MatTl (R). The determinant of 2 m is independent of any choice. We 
let the reduced covolume |L| be the determinant of the matrix 2mL/L0 that is associated 
with the non-degenerate lattice L/L0.

The real dual L∨R is defined for arbitrary L and consists of all linear functions on 
LR. We call L∨ =

{
ν∨ ∈ L∨R : ∀ν ∈ L : ν∨(ν) ∈ Z

}
 the dual of  L. It can be identi-

fied with 
{
ν ∈ L⊗Q : ∀ν′ ∈ L : �ν, ν′� ∈ Z

}
, if L is non-degenerate. In this case, we 

write disc(L) for the discriminant module L∨/L. If L is non-degenerate, then L∨ ⊆ L∨R 
via ν∨(ν) = �ν∨, ν�L ∈ Z for ν∨ ∈ L∨ and ν ∈ L. We define a scalar product �· , ·�L on 
L∨R as follows. On (L0)∨R , it is zero. A complement to (L0)∨R is given by the inclusion 
(L/L0)R →֒ L∨R, on which we set L[�ν, ·�L] = 4L[ν] for ν ∈ LR. This quadratic form is the 
same that arises in the case of l0 = 0 from the inclusion L∨ ⊇ L.

The Weil representation associated with a non-degenerate lattice L is a representation 
of the metaplectic cover Mp2(Z) of SL2(Z) on the group algebra C[disc(L)] (see [28]). A 
natural basis for C[disc(L)] is given in terms of eν, where ν runs through disc(L). By abuse 
of the notation, we write S and T for the generators of the metaplectic cover of SL2(Z) 

that project to the corresponding generators S =
(
0 −1
1 0

)
 and T =

(
1 1
0 1

)
 of SL2(Z). In 

terms of our basis of C[disc(L)] and these generators of Mp2(Z), the Weil representation 
is defined as:

∑

n,r

c(n, r) exp (2π i (nτ + r(z)))
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where σL =
√
2|L|−1∑

ν∈disc(L) e(−L[x]) is the signum of L. Here, we use the shorthand 
notation e(x) = exp(2π i x) for x ∈ C that will appear later again. Throughout the paper, 
we will pass from SL2(Z) to its metaplectic cover whenever necessary and without fur-
ther mentioning it.

Given any set of vectors ν1, . . . , νn, we denote their span by span{ν1, . . . , νn}. It will be 
clear by the context, whether we mean the span over Z, R, or C. The orthogonal comple-
ment of ν1, . . . , νn will be denoted by {ν1, . . . , νn}⊥, or in the case of n = 1 by ν⊥1 . For a 
subset B of LQ, the span of B is denoted by LB = L ∩ spanQ B.

Given a subset B of L⊗ R, we define

Jacobi forms

The Poincaré upper half plane and the Jacobi upper half space attached to a lattice L are

The latter is isomorphic to H(J l) = H× Cl in a non-canonical way. Typically, elements 
of H(J L) are written as pairs (τ , z), where z = u+ iv with u, v ∈ LR. Recall the nota-
tion e(x) = exp(2π ix) for x ∈ C. The variable q stands for e(τ ). Given r ∈ L∨R, we set 
ζ r = e(r(z)).

Multiplication in the real Jacobi group attached to L

is given by

Here, a typical element of G(J L) is denoted by g J = (γ , �,µ), where �,µ ∈ L⊗ R. 
The pair (�,µ) is viewed as an element of L⊗ R2, on which γ ′ acts trivial on the first 
component and by its standard representation from the right on the second com-
ponent. Note that G(J L) is independent of the quadratic form  qL. The discrete sub-
group Ŵ(J L) = SL2(Z)⋉ (L⊗ Z2) ⊂ G(J L) is called the full Jacobi group.

The action of SL2(R) on H is given by

where here and throughout the element γ of SL2(R) is written as 
(
a b
c d

)
. The real Jacobi 

group acts on the Jacobi upper half plane via

Fix an integer k and a lattice L as above. The action of G(J L) on H(J L) admits a cocyle

(2.1)
ρm(T ) eν := e(L[ν]) eν , ρm(S) eν :=

1

σL
√
2|L|

∑

ν′∈disc(L)
e
(
−�ν, ν′�L

)
eν′ ,

(2.2)

B+ =
{
b ∈ B : L[b] > 0

}
, B− =

{
b ∈ B : L[b] < 0

}
, B0 =

{
b ∈ B : L[b] = 0

}
.

H = {τ = x + iy : y > 0} ⊂ C, and H(J L) = H× (L⊗ C2).

G(J L) := SL2(R)⋉ (L⊗ R2)

(γ , �,µ) · (γ ′, �′,µ′) =
(
γ γ ′, (�,µ)γ ′ + (�′,µ′)

)
.

γ τ =
aτ + b

cτ + d
,

(γ , �,µ)(τ , z) =
(
γ τ ,

z + �τ + µ

cτ + d

)
.
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which leads to the following slash action on C∞(H(J L)).

This is the usual Jacobi slash action.
We say that a function φ : H(J L) → C has non-moving singularities, if there are 

finitely many linear maps �∨ : LQQ→Q and finitely many α,β ∈ Q, such that the singu-
larities of φ are located at {z : �(z) = α + βτ } + L+ τL. We say that such a singularity 
at (τ0, z0) has +(i) meromorphic type, (ii) almost meromorphic type, or (iii) real-analytic 
quotient type, if there is a neighborhood U ⊂ H of τ0, a function z0 : H → L⊗ C with 
z0(τ0) = z0, and a function ψ : U\{(τ , z0(τ )) : τ ∈ U} which +(i) is meromorphic, (ii) is 
the quotient of a real analytic by a holomorphic function, or (iii) is the quotient of two 
real-analytic functions such that φ − ψ can be continued to a real-analytic function in 
the neighborhood of (τ0, z0). A complex valued function on H(J L) that is meromorphic as 
a function of the second component z will be called semi-meromorphic. Any such func-
tion is called semi-holomorphic if it has no singularities.

Remark 2.1  It appears that the term “non-moving poles” was coined by Zagier. The 
intuition behind it is that torsion points ατ + β, α,β ∈ LQ should be viewed as fixed 
while varying τ. A typical example of a modular form with non-moving singularities of 
meromorphic type is the inverse theta series.

A meromorphic Jacobi form of weight k and index L with non-moving singularities is a 
meromorphic function φ : H(J L)→C, such that φ|k ,L γ J = φ for all γ J ∈ Ŵ(J L). The space 
of such forms is denoted by MJk ,L, where M refers to meromorphicity.

Finally, it is clear that the concept of vector-valued elliptic modular forms extends 
to Jacobi forms. The Weil representation, previously described as a representation of 
SL2(Z) or its metaplectic double cover, can be viewed as representation of the full Jacobi 
group by defining ρL(�) = ρL(µ) = id, the identity.

Differential operators

We discuss the theory of covariant and invariant differential operators for the extended 
real Jacobi group. The results coincide with the ones in Ref. [11], if L is non-degenerate. 
Even if L is degenerate, we still employ the results of [11] in a crucial way. The reader is 
referred to this work for details on the Lie theoretic background. Note that our nota-
tion significantly differs from the one that appeared in a previous work. It is close to the 
nowadays common notation for the classical differential operators for Maaß forms—see 
page 177 of [22]. This notation seems thus better suited for usage outside the context of Lie 
groups, but inside the scope of modular forms and Jacobi forms.

Let D∞(H(J L)) be the algebra of differential operators on H(J L). The subalgebra of G(J L)

-invariant differential operators for the slash action defined in (2.4) is denoted by D(k , L).  
We may regard the imaginary part v of z ∈ LC as an element �v, · �L of L∨R ⊗ D∞(H(J L)), 

(2.3)
α
J
L

(
g J, z

)
= e

(
−cL[z]
cτ + d

+ �z, ��L + L[�]τ
)
,

(2.4)
(
φ
∣∣
k ,L

(γ , �,µ)
)
(τ , z) = (cτ + d)−k α

J
L(g

J, z) φ((γ , �,µ)(τ , z)).
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where D∞(H(J L)) is the space of smooth differential operators on H(J L). We view ∂z and 
∂z  as elements of L∨R ⊗ D∞(H(J L)), so that, in particular, �v, ∂z�L ∈ D∞(H(J L)).

As is common by now, we suppress the subscripts k, L, if they are clear from the context. 
We write LJH[ν] and RJH[ν] for the evaluation of LJH and RJH, respectively, at ν ∈ LR.

Remark 2.2  The superscript J of the raising and lowering operator should remind the 
reader of Jacobi forms, on which they act. The superscript H refers to the Heisenberg 
subgroup of G(J L). The lowering and raising operators LJH and RJH both act only on the 
elliptic variable z, which originates in the Heisenberg subgroup of G(J L).

The commutation relations of lowering and raising operators are

They can be verified readily by means of Helgason’s theory of differential operators [16] 
as displayed in Ref. [11], and a computation of the images of y or v.

The commutation relations in  (2.6) show that we can view the raising and lowering 
operators in conjunction with one further element k as generators of an abstract algebra. 
The additional element k acts on Jacobi forms by multiplication with their weight. The 
commutation relations of k are

We write DJ for this algebra, and DJ for the k centralizer subalgebra of DJ. It consists of 
elements that act on Jacobi forms as invariant differential operators. To emphasize the 
dependence on L, we occasionally add the subscript L to DJ and DJ.

We define a Casimir operator CJk ,L ∈ D∞(H(J L)), extending the expression in Ref. [11] 
to the case of degenerate L. It is given by

which equals

(2.5)

L
J
k ,L := −2iy

(
y∂τ + �v, ∂z�L

)
, R

J
k ,L := 2i

(
∂τ + y−1�v, ∂z�L + 2π i y−2 L[v]

)
+ ky−1,

L
JH
k ,L := −iy ∂z , R

JH
k ,L := i∂z − 2πy−1�v, ·�L.

(2.6)

[
LJ, RJ

]
= −k ,

[
LJ, LJH

]
= 0,

[
LJ, RJH

]
= −LJH,

[
RJ, RJH

]
= 0,

[
LJH, RJ

]
= RJH,

[
LJH, RJH

]
= −π� , �L ∈ L∨R ⊗ L∨R .

[
LJ, k

]
= 2LJ,

[
RJ, k

]
= −2RJ,

[
LJH, k

]
= LJH,

[
RJH, k

]
= −RJH.

(2.7)

− 2R
J
L
J + i

(
R
J
〈
L
JH
, L

JH
〉
L

− L
J
〈
R
JH
, R

JH
〉
L

)
− 1

2

(
L

[
R
JH
]
L

[
L
JH
]
−

〈
R
JH�RJH

, L
JH�L, LJH

〉
L

)

− i

2
(2k − l − 3)

〈
R
JH
, L

JH
〉
L

,

(2.8)

− 2�k−l±/2 +
y2

π i (∂τL[∂z] + ∂τL[∂z])− 8y∂τ �v, ∂z�L

+ y2

32π2

(
4L[∂z]L[∂z] − �∂z , ∂z�2L

)
+ y

2π i �v, ∂z�L�∂z , ∂u�L −
(2k−l+1)y

8π
�∂z , ∂u�L

+ 2�v �v, ∂z�L, ∂z�L + (2k − l+ − l− − 1)i�v, ∂z�L.
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We easily check that CJk ,L commutes with all invariant differential operators by using that 
this is the case for non-degenerate L and that CJ depends continuously on L[ · ].

Suppose that L is degenerate, then differentials with respect to z ∈ L0 ⊗ C ⊆ LC do not 
occur in CJ. Instead, additional operators arise from the totally isotropic part of L. From 
the formal element k, we obtain an sl2-triple (LJ, k, RJ). As stated before, the kernel of the 
commutator [k ·, ] consists of invariant differential operators. Let

be the subalgebra of DJ attached to the totally isotropic part of LR.

Proposition 2.3  The center of DJ
L is generated by CJ, viewed as an element of DJ

L by (2.7), 
and the sl2-invariants H0

(
span{LJ, k, RJ}, DJH0

)
.

Remark 2.4  Note that we refer, in the above proposition, to the center of DJ, and not 
the one of DJ. The latter might be larger, but we believe that they agree.

Proof  We have already asserted that CJ is central in DJ. From results in Ref. [11], it spans 
the center of DJ

L/L0
. Since also DJH0 is the kernel of DJ

L→D
J
L/L0

, the result follows. 

Let us fix the notation for the following extra differential operators, which lie in the 
part of the center of DJ that arises from L0 ⊗ R.

The classical weight k Laplace operator on H arises from CJ when we consider the lat-
tice L of rank 0, which we provisionally denote by ∅.

It factors as a product �k = ξ2−kξk, where

is the classical ξ operator that first appeared in Ref. [2].
The Heisenberg Laplace operator is similar to �k, but acts merely on the z-variable of 

functions on H(J L). Given ν ∈ LR, we set

Harmonic weak Maaß forms

We revisit briefly the theory of harmonic weak Maaß forms. A nice exposition can be 
found in Ref. [8]. Vector valued elliptic modular forms are invariant under the 

∣∣
k ,ρ

 slash 
action, which is associated with some weight k ∈ 1

2Z and a type, i.e., a finite dimensional, 
complex representation ρ of SL2(Z) or Mp2(Z). The slash action is defined by

DJH0 = C
[
LJH[ν], RJH[ν] : ν ∈ L0 ⊗ R

]

�

(2.9)�
JH[ν,ν′]
L := LJH[ν]RJH[ν′] − LJH[ν′]RJH[ν], ν, ν′ ∈ L0 ⊗ R, ν �= ν′.

(2.10)�k := R
J
k ,∅L

J
k ,∅ = 4y2 ∂τ ∂τ − 2kiy ∂τ .

(2.11)ξk f = yk−2 L
J
k ,∅ f

(2.12)�
JH[ν]
L := R

JH[ν]
k−1,m L

JH[ν]
k ,m = y ∂z(ν)∂z(ν)+ 4π i �v, ν�L ∂z(ν).
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where γ τ denotes the action of SL2(R) on H. Recall that we pass to the metaplectic cover 
in case that k �∈ Z.

The space of vector-valued modular forms of weight k and type ρ is the space of holomor-
phic functions f : H → V  that satisfy +(i) f

∣∣
k ,ρ

γ = f  for all γ ∈ Ŵ and (ii) f (τ ) = O(1) 
as y → ∞. We denote this space by Mk(ρ). The space of weakly holomorphic elliptic mod-
ular forms is the space of holomorphic functions f : H → V  where the second condition 
is weakened: f (τ ) = O(eay) for some a > 0 as y → ∞. This space is denoted by M!

k(ρ).
The space of harmonic weak Maaß forms of weight  k and type ρ, which is denoted 

by Mk(ρ), consists of real-analytic functions f : H → C satisfying +(i) f
∣∣
k ,ρ

γ = f  for 
all γ ∈ Ŵ, (ii) �k f = 0, and (iii) f (τ ) = O(eay) as y → ∞ for some a > 0.

Skew Jacobi forms

We close the preliminaries with the definition of skew(-holomorphic) Jacobi forms of the 
matrix index. The original definition of skew Jacobi forms of scalar indices m was given 
in Ref. [29]. It was formulated referring to a slash action:

This allowed choosing positive Jacobi indices  m. However, in the case of general Jac-
obi indices L, such a choice is slightly impractical, when used in conjunction with the 
differential operator LJH, as we will see later. More importantly, it hides an interesting 
structural analogy that occurs when passing from real-anlytic Jacobi forms to skew Jac-
obi forms. For this reason, we choose a different equivalent slash action to define skew 
Jacobi forms.

Given L, fix a maximal negative definite subspace LskR ⊆ LR. Since LskR  is non-degen-
erate, it allows for an orthogonal decomposition of z into z1 and z2 ∈ LskR ⊗ C. We 
write � = �1 + �2, µ = µ1 + µ2, and g J1 = (g , �1,µ1), g J2 = (g , �2,µ2). For functions 
φ : H(J L)→C, the skew slash action attached to LskR  is defined by

The cocycle αJ can be found in (2.3).
Set Lsk = L ∩ LskR , which is by means of the restriction of � ·, · �L a negative definite lat-

tice. The skew heat operator attached to L is the complex conjugate of the usual one:

It annihilates anti-holomorphic theta series

that can be defined for ν ∈
(
Lsk ⊗Q

)
/Lsk:

(
f
∣∣
k ,ρ

γ

)
(τ ) = (cτ + d)−kρ(γ )−1f (γ τ),

|cτ + d|−1(cτ + d)
k−1

e

(
−mcz2

cτ + d

)
φ

(
aτ + b

cτ + d
,

z

cτ + d

)
.

(2.13)φ
∣∣sk[LskR ]
k ,L g J = |cτ + d|−l−(cτ + d)l−/2−k α

J
L(γ

J
1, z1)α

J
L(γ

J
2, z2) (φ ◦ (γ , �,µ)).

(2.14)Lsk
L = ∂τ + 1

8π i L[∂z].

(2.15)
θ sk
Lsk ,ν

=
∑

ν∈ν+Lsk

qL[ν]ζ
�z,ν�L
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where we have explicitly written the inclusion of ν ∈ LR into L∨R. Recall that by definition, 
we have L

[
�ν, ·�L

]
= 4L[ν], which implies that Lsk

L θ sk
Lsk ,ν

= 0.

Definition 2.5  Let L be a lattice, and let LskR  and z = z1 + z2 be as above. A function 
φ : H(J L)→C that is real-analytic, except for non-moving singularities of real-analytic 
quotient type, is called a skew Jacobi form of weight k, index L, and skewness LskR  if it sat-
isfies the following conditions:+

(i)	 For all γ J ∈ Ŵ(J L), we have φ|sk[L
sk
R ]

k ,L γ J = φ.
(ii)	 The function φ is meromorphic in z1 and antimeromorphic in z2.
(iii)	 We have Lsk

L φ = 0.
(iv)	� We have φ(τ , z) = O(1) as y → ∞, if z = ατ + β, α,β ∈ LR is a non-singular 

point of φ.

We will denote the space of such skew Jacobi forms by MJ
sk[Lsk]
k ,L .

Singularities of skew Jacobi forms cannot be located in arbitrary position. The first instance 
of a related discussion appears in Ref. [6], which we extend to the case of lattice indices.

Proposition 2.6  Let φ ∈ MJ
sk[Lsk]
k ,L . If φ is singular along {(τ , z) : ν∨(z) = ατ + β} for 

ν∨ ∈ L∨Q and α,β ∈ Q, then ν∨ lies in the orthogonal complement of �LskR , · �L ⊆ L∨R.

Proof  We prove the proposition by contradiction. Suppose that there is νsk ∈ LskR  with 
ν∨(νsk) �= 0 along which some skew Jacobi form φ has singularities.

We employ coordinates z1, . . . zl with respect to which L has the form L[z] =
∑

i siz
2
i  

with si ∈ {−1, 0, 1}. Further, we may assume that LskR = span{z1, . . . , zlsk } for 
lsk = dim LskR . Since φ is anti-meromorphic with respect to zi, 1 ≤ i ≤ lsk, we have a local 
Laurent expansion

where zi,0 is linear in τ, and cn = 0 for small enough ni. By definition, φ is annihilated by 
the skew heat operator, which implies that

Lsk
L θ sk

Lsk ,ν
(τ , z) =

∑

ν∈ν+Lsk

(
−2π iL[ν] + 2

8π i (2π i)
2L[�ν, ·�L]

)
qL[ν]ζ

�z,ν�L ,

∑

n=(n1,...,nl)∈Zl

cn(τ )

lsk∏

i=1

(
zi − zi,0(τ )

)ni l∏

i=lsk

(
zi − zi,0(τ )

)ni ,

(2.16)

�

n

lsk�

i=1

�
zi − zi,0(τ )

�ni l�

i=lsk

�
zi − zi,0(τ )

�ni

×



∂τ cn(τ )+

lsk�

i=1

−∂τ zi,0(τ )

zi − zi,0(τ )
+

lsk�

i, j = 1

i �= j

ninj�
zi − zi,0(τ )

��
zj − zj,0(τ )

� +
lsk�

i=1

ni(ni + 1)
�
zi − zi,0(τ )

�2



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vanishes. We show in three steps that ni ≥ 0 if cn �= 0 and 1 ≤ i ≤ lsk. Exploiting symme-
try, it suffices to consider the case i = 1. Fix n with cn �= 0 that is minimal with respect to 
the ordering

First, consider the last term in (2.16), which must vanish if n1 < 0, since the exponent 
of zi − zi,0(τ ) that arises from it is minimal with respect to (2.17). From this, we see that 
n1 ≥ −1. Second, if n1 = −1, we inspect the term next to the last term in (2.16). It shows 
that ni = 0 for 2 ≤ i ≤ lsk. Third, we inspect the second term. If z1,0 is constant, it is zero, 
so that the first term forces n1 ≥ 0. Otherwise, it yields the lowest term of  (2.16), and 
hence again n1 ≥ 0.�  �

The previous proposition is essential, since it allows us to obtain theta decompositions 
with respect to Lsk ⊆ L for all skew Jacobi forms, as opposed to holomorphic Jacobi 
forms, for which singularities can occur.

Proposition 2.7  Fix L and Lsk as above, and suppose that Lsk ⊆ L splits off as a direct 
summand: L = L′ ⊕ Lsk for some lattice L′. Recall the decomposition of z into z1 and z2. 
For any φ ∈ MJ

sk[Lsk]
k ,L , we have a theta decomposition

for a vector-valued meromorphic Jacobi form

Proof  We only provide a sketch of the proof and leave the verification of the details 
to the reader. Fixing a skew Jacobi form φ as in the statement, we have a local Fourier 
expansion at (τ0, z0) ∈ H(J L) that are of the form

Proposition 2.6 says that given z ∈ LC, the function z2 ∈ LskC �→φ(τ , z + z2) has no sin-
gularities. In conjunction with invariance of φ under the action of Lsk ⊗ Z2 ⊂ Ŵ(J L), we 
find that

for all rsk ∈ Lsk and with 4n+ L[r] = 4n′ + L[r + 2rsk]. From this, one concludes 
directly that there is a theta decomposition of the asserted form. 

Remark 2.8  We assume that Lsk splits off from L, but this restriction is not essential. 
We can always pass to suplattices of L that splits into orthogonal sums and employ vec-
tor-valued Jacobi forms. This procedure requires the extension of the full Jacobi group 
defined in Ref. [11].

(2.17)n′ < n ⇔ ∃i0 : ni0 < n′i0 ∧ ∀i < i0ni = n′i.

(2.18)
φ(τ , z) =

∑

ν0∈disc(Lsk)

ψν0(τ , z1) θ
sk
Lsk ,ν0

(τ , z2),

(ψν0)ν0∈disc(Lsk) ∈
MJk−l−/2, L′

(
ρLsk

)
.

∑

n ∈ Z
r ∈ L∨

c(τ0,z0)(n, r; y, v) qnζ r .

c(τ0,z0)(n, r; y, v) = c(τ0,z0)(n
′, r + 2rsk; y, v)

�
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H‑harmonic Maaß‑Jacobi forms
In  Ref. [11], Conley and the author provided a definition of H-harmonic Maaß-Jacobi 
forms for non-degenerate lattice indices. We chose a coordinate-independent definition 
and were able to show that if the rank of L exceeds 1, then all instances of H-harmonic 
Maaß-Jacobi forms are semi-meromorphic. In other words, for such lattices, H-harmonic 
Maaß-Jacobi forms in the sense of [11] fall under the scope of previous considerations.

We now provide a definition of H-harmonic Maaß-Jacobi forms that depends on the 
choice of a subset B of P(LR). Elements of B will be frequently identified with preimages in 
LR to simplify notation. This section contains the study of basic properties of H-harmonic 
Maaß-Jacobi forms. The definition is formulated for arbitrary B, but we will see in Proposi-
tions 3.6 and 3.11 and Corollary 3.7 that it suffices to consider a finite set of mutually orthog-
onal, negative vectors. This explains our choice of notation: the reader should think of B as a 
basis for a negative definite subspace of LR (very much related to LskR  in the previous section).

Definition 3.1  Let L be a lattice, and B ⊆ P(LR) with span B = LR. Let φ : H(J L)→C 
be real-analytic except for non-moving singularities of real-analytic quotient type. We 
say that φ is an H-harmonic Maaß-Jacobi form of weight k, index L, and H- harmonic-
ity B if it satisfies the following conditions: +

(i)	 For all γ J ∈ Ŵ(J L), we have φ|k ,L γ J = φ.
(ii)	� The function φ is annihilated by the center of DJ

k ,L. In particular, we have 
C
J
k ,L φ = 0.

(iii)	 We have �JH[b] φ = 0 for all b ∈ B.
(iv)	� The growth condition φ(τ ,ατ + β) = O

(
eay

)
 as y → ∞ is satisfied for some 

a > 0 provided that z = ατ + β, α,β ∈ LR is a non-singular point of φ.

We denote the space of all such H-harmonic Maaß-Jacobi forms by MJ
�,H[B]
k ,L . The 

notation for spaces of vector-valued Jacobi forms is analogous to the one for elliptic 
modular forms, introduced below. We refer to a representation ρ of Ŵ(J L) in parenthesis.

Remark 3.2 

(1)		� We assume in Definition  3.1 that H-harmonic Maaß-Jacobi forms have singu-
larities of real-analytic quotient type. However, it follows from the theory that 
we develop in this paper that they automatically have almost meromorphic sin-
gularities. This is a consequence of Theorem 5.2, which in this regard is based on 
Proposition 2.7.

(2)	� The definition extends to half-integral weights and indices, and to complex rep-
resentations of Ŵ(J L). We do not treat these cases explicitly, as they lead to addi-
tional technical difficulties and do not yield further insight. Zwegers’s µ̂-function, 
however, strictly speaking does not fall under Definition 3.1. Confer [6] for more 
details on the latter.

(3)		� Equally well, one can define H-harmonic Maaß-Jacobi forms for any Ŵ = Ŵ′ ⋉ L2 
where Ŵ′ ⊂ SL2(Z) has finite index.

(4)	�	� An analogous definition can be made for the skew Jacobi slash action, which sub-
sumes the image of ξ JH[b] defined below.
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Various spaces of H‑harmonic Maaß‑Jacobi forms

In analogy with the ideas that were presented in Ref. [6], we define several subspaces of 
MJ

�,H[B]
k ,L , and remark on how they might be studied. It should be clear that not all of them 

appear in the present work, but it seems advantageous to suggest uniform notation for 
sequels to this paper.

We will very soon restrict our attention to MJ
H[B]
k ,L , which is defined by

This space is very much analogous to the one primarily studied in  Ref. [6]. We will 
deduce a theta-like decomposition for the forms in it in “Theta‑like decompositions”. 
The notation defined here for general H-harmonic Maaß-Jacobi forms transfers directly 
to those annihilated by LJ.

If L is non-degenerate, and B ⊆ LR does not span LR, then we set

We refrain from extending this definition to degenerate lattices, since L0 ⊗ R ⊂ B⊥ for 
every B, so that the notation would become ambiguous. Instead, we set for Bhol ⊆ P(LR) 
with Bhol + span B = LR

In accordance with the notation in Ref. [6], we write MJ
�,h
k ,L  for MJ

�,h[LR]
k ,L = MJ

�h[LR]H[∅]
k ,L .

Remark 3.3 

(1)	�	� The theory of Maaß-Jacobi forms in MJ�,h
k ,L  was developed in Ref.  [11]. It resem-

bles strongly the theory of harmonic weak Maaß forms.
(2)	�	� A theory similar to the one developed in Ref. [6] could be developed for MJ�,H[B] 

by considering the restrictions.
(3)	�	� If L is non-degenerate, then MJhk ,L = MJk ,L is the space of meromorphic Jacobi 

forms with non-moving singularities of meromorphic type.

The Heisenberg ξ‑operators

As in the case of l = 1, dealt with in Ref. [6], there is a Heisenberg ξ-operator, which we 
define now. Given ν ∈ LR, we set

If B is a set of orthogonal vectors, none of which is isotropic, we set ξ JH[B] =
∏

b∈B ξ
JH[b].

Proposition 3.4  Fix a subspace LskR ⊆ LR that contains no totally isotropic vector. Given 
a set B ⊂ P(LR) of mutually orthogonal vectors that are also orthogonal to LskR , and none 
of which is isotropic, we let LskR + B be the span of LskR  and B. Then for any smooth func-
tion φ on H(J L) and any g J ∈ G(J L), we have

MJ
H[B]
k ,L = MJ

δ,H[B]
k ,L := MJ

�,H[B]
k ,L ∩ ker LJ.

MJ
�,H[B]
k ,L := MJ

�,H[B+B⊥]
k ,L ∩ kerb∈B⊥ LJH[b].

MJ
�,h[Bhol]H[B]
k ,L := MJ

�,H[B+Bhol]
k ,L ∩ kerb∈Bhol L

JH[b].

(3.1)ξ
JH[b]
L :=

sgn(L[b] �v, b�L)√
|L[b]|y

exp

(
−π �v, b�2L
L[b] y

)
L
JH[b]
L .
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Proof  It suffices to treat the case B = {b}. We write zb = b�z, b�L/2L[b] and 
�b = b��, b�L/2L[b]. Using the known covariance of LJH and y

−1
2 , we only need to estab-

lish that

Checking this for g J =
((

0 −1
1 0

)
, 0, 0

)
 and for g J =

((
1 0
0 1

)
, �, 0

)
 separately estab-

lishes the statement. � �

Remark 3.5  The image of ξ JH[B′] with B′ ⊆ B applied to MJ
�,H[B]
k ,L , in general, is an 

instance of skew H-harmonic Maaß-Jacobi forms, referred to in Remark  3.2(4). If 
B′ = B, we obtain proper skew Jacobi forms as in Definition 2.5. This is a consequence of 
Proposition 3.15.

Non‑trivial H‑harmonicities are orthogonal

Definition 3.1 of H-harmonic Maaß-Jacobi forms refers to a set B ⊆ P(LR). However, it 
suffices to study sets of mutually orthogonal vectors. The argument that we employ to 
show this is similar to the one in Ref. [11]. But the degenerate case does not allow for a 
quite straightforward generalization.

Proposition 3.6  For any B ⊆ P(LR), we have

Proof  Fix b, b′ ∈ B with b �= b′ and �b, b′�L �= 0. We lift both to elements of LR, denoting 
these again by b and b′. In case that b− b′ ∈ L0 ⊗ R, then replace, without loss of restric-
tion, b′ by 2b′. In particular, we may assume that b− b′ is not totally isotropic.

We have to show that any φ ∈ C∞(H(J L)) that is annihilated by �JH[b] and �JH[b′] is 
already annihilated LJH[b] and LJH[b′]. Now, the remainder of the proof is the same as the 
proof of Theorem 3.4 of [11]. For convenience of the reader, we reproduce a variation of 
it. It suffices to consider functions a(y, v) that are annihilated by �JH[b] and �JH[b′]. The 
commutator

also annihilates a(y, v), which implies that

ξ
JH[B]
L

(
φ
∣∣sk[LskR ]
k ,L g J

)
=

(
ξ
JH[B]
L φ

)∣∣sk[LskR+B]
k ,L g J.

exp

(
−π �v, b�2L
L[b] y

)
e

(
−cL[zb + �bτ ]

cτ + d
+ �zb, b�L + L[�b]τ

)

= e

(
−cL[zb + �bτ ]

cτ + d
+ �zb, b�L + L[�b]τ

)(
exp

(
−π �v, b�2L
L[b] y

))

τ �→−1
τ
, z �→ z

τ

.

(3.2)

MJ
H[B]
k ,L ⊆ MJ

h[B �=0]H[B=0]
k ,L , where

B=0 =
{
b′ ∈ B : ∀b ∈ B, b �= b′ : �b, b′�L = 0

}
,

B�=0 =
{
b′ ∈ B : ∃b ∈ B, b �= b′ : �b, b′�L �= 0

}
.

[
�JH[b], �JH[b′]] = π�b, b′�L

(
RJH[b′]LJH[b] − RJH[b]LJH[b′])



Page 18 of 34Westerholt‑Raum. ﻿Mathematical Sciences  (2015) 2:12 

Because

we find that �JH[b′] acts on a(y, v) as

We now consider the action of �JH[b′] − �v,b′�L
�v,b�L �JH[b], which is

Therefore a(y, v) is constant in direction of b if the first factor is not zero. Since this fac-
tor is a non-trivial polynomial in 〈v, b〉L and �v, b′�L, this implies the statement. 

Corollary 3.7  Let B ⊆ P(L⊗ R) be a set of mutually orthogonal vectors that spans a 
maximal non-degenerate subspace of LR. Then

where B0 = {b ∈ B : L[b] = 0} and B± = {b ∈ B : L[b] �= 0} are the subsets of isotropic 
and non-isotropic vectors in B.

Proof  By the assumption that span B is maximal non-degenerate, for each b ∈ B0 there 
is b′ ∈ B with �b, b′�L �= 0. Proposition 3.6 therefore implies the corollary. 

The totally isotropic subspace of LR would pose particular technical problems, if only 
vanishing with respect to the Casimir operator is imposed. However, Definition 3.1 also 
features the degenerate central invariant differential operators �JH[ν,ν′] given in  (2.9). 
They enforce reasonable analytic behavior on H× (L0 ⊗ C) ⊆ H(J L).

Lemma 3.8  Any orthogonal set B ⊆ P(LR) with span B = LR contains a generating set 
of L0 ⊗ R.

Proof  Passing to the quotient L/L0, observe that span B = (L/L0)⊗ R. Further, vectors 
in L/L0 ⊗ R are orthogonal to each other if and only if they are so in LR. Thus, we see 
that B contains exactly l+ + l− vectors that are not totally isotropic. The remaining vec-
tors must span L0 ⊗ R, since B spans LR.�  �

Proposition 3.9  Any φ ∈ MJ
H[B]
k ,L  is either holomorphic or anti-holomorphic with 

respect to L0 ⊗ C ⊆ LC.

∂v(b
′) a(y, v) =

�v, b′�L
�v, b�L

∂v(b) a(y, v).

∂v(b
′)
�v, b′�L
�v, b�L

=
�b′, b′�L�v, b�L − �b, b′�L�v, b′�L

�v, b�2L
,

�v, b′�L
�v, b�L

∂v(b)
2 +

(
−2π

y

�v, b′�2L
�v, b�L

+
�b′, b′�L�v, b�L − �b, b′�L�v, b′�L

�v, b�2L

)
∂v(b).

(
−2π

y

�v, b′�2L
�v, b�L

+
�b′, b′�L�v, b�L − �b, b′�L�v, b′�L

�v, b�2L
+

2π

y

�v, b′�L
�v, b�L

�v, b′�2L
�v, b�L

)
∂v(b).

�

MJ
H[B]
k ,L = MJ

h[B0]H[B±]
k ,L ,

�
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Proof  Lemma 3.8 tells us that B0 generates L0 ⊗ R. By assumption, φ is annihilated by 
�JH[b] for b ∈ B0. If φ is constant with respect to every b ∈ B0, then we are done. Assum-
ing this is not the case, we can fix one b so that either LJH[b] φ �= 0 or RJH[b] φ �= 0. Fur-
ther, fix ν ∈ L0 ⊗ R which is not a multiple of b.

Since both b and ν are totally isotropic, LJH[ν] = −iy∂z(ν), RJH[ν] = i∂z(ν), 
LJH[b] = −iy∂z(b), and RJH[b] = i∂z(b) commute. Therefore, φ vanishing under �JH[ν] and 
�JH[b] is equivalent to φ being locally a sum of a holomorphic and an anti-holomorphic 
function in the direction of ν and b each.

Consider the equation �JH[b,ν] φ = 0 which is implied by Condition  (ii) of Defini-
tion 3.1 in conjunction with (2.9). It means that

The left hand side is holomorphic with respect to b, and the right hand side is anti-hol-
omorphic with respect to b. Since φ is a sum of a holomorphic and an anti-holomorphic 
function in b, this implies that both the left and the right hand side are zero. Therefore, 
if LJH[ν] φ �= 0, then RJH[b] φ = 0, and if RJH[ν] φ �= 0, then LJH[b] φ = 0. This proves the 
claim. 

For reference, we fix the notation for spaces that are meromorphic and anti-meromor-
phic on L0 ⊗ R

Example 3.10  Recall that ζ(τ , z) is the Weierstass ζ function, and θ(τ , z) is the Jacobi 
theta function.

From this representation of θ ad ζ , we directly read off their zeros and poles.
The splitting of Zwegers’s two-variable µ̂-function is well known, but in  [31] Zagier 

only remarked on it in a footnote. Zwegers’s definition of µ̂ is

LJH[ν] RJH[b] φ = RJH[ν] LJH[b] φ.

�

(3.3)

MJh[Bhol] h0 H[B] = MJh[Bhol]H[B+L0⊗R] ∩ kerb∈L0⊗R LJH[b],

MJh[Bhol] h0 H[B] = MJh[Bhol]H[B+L0⊗R] ∩ kerb∈L0⊗R RJH[b].

θ(τ , z) =
∑

n∈ 1
2+Z

(−1)n−
1
2 qn

2
ζ n = q

1
8 ζ

1
2

∞∏

n=1

(
1− qn

)(
1− ζqn

)(
1− ζ−1qn−1

)
and

ζ(τ , z) =
∂z θ(τ , z)

θ(τ , z)
=

1

z
+

∑

z0 ∈ Z+ τZ
z0 �= 0

(
1

z − z0
+

1

z0
+

z

z20

)
.

(3.4)

µ̂(τ , z1, z2) =
e
π iz1

θ(τ , z2)

∑

n∈Z

(−1)ne
(
n
2+n

2 τ + nz2

)

1− e
(
nτ + z1

)

−
i

2
√
π

∑

n∈ 1
2+Z

(
−sgn(n)−H

H[(−1,1)](
y,u1 − u2; n

))
(−1)n+

1
2 e

(
−n

2

2 τ + n(z1 − z2)

)
,
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which we obtain after unraveling Formula  (1.8) in  Ref. [34]. Its index, Theorem  1.11 

of [34] states, is the matrix m = 1
2

(
−1 1
1 −1

)
. Note that here we fix a basis for the cor-

responding lattice with Gram matrix m.
The one-variable µ̂-function was never defined by Zwegers in a formal way, and Zag-

ier  [31] simply asserted the existence of a one-variable µ̂-function. So, we have to prove that

transforms like a Jacobi form and only depends on z1 − z2.
The two-variable µ̂ function has simple poles at z2 ∈ Z+ τZ [from the prefactor of 

the first term of (3.4)] and at z1 ∈ Z+ τZ [from the denominator inside the sum of the 
first term of (3.4)]. The residue at z1 = 0 is easily seen to be θ(τ , z2)−1, and the symme-
try of µ̂(τ , z1, z2) stated in Theorem 1.11 (3) of [34] shows that the residue at z2 = 0 is 
θ(τ , z1)

−1. The poles of ζ(τ , z) lie at z ∈ Z+ τZ. One thus quickly checks that the func-
tion in (3.5) has poles at z1 − z2 ∈ Z+ τZ.

We conveniently inspect the modular properties of ζ(τ , z1)− ζ(τ , z2)+ ζ(τ , z1 − z2) 
by means of  [27]—also refer to  [23]—which implies it is a Jacobi form of index 0. The 
quotient by θ(τ , z1 − z2) yields a meromorphic Jacobi form of index m, the same as the 
one of µ̂(τ , z1, z2). Therefore, (3.5) displays a real analytic Jacobi form of index m whose 
poles are supported on z1 − z2 ∈ Z+ τZ.

The image of µ̂(τ , z1, z2) under ξ JH[b2] vanishes, from which we infer that µ̂ is mero-
morphic in the direction of b2 = (1, 1), and so is  (3.5). From our above considerations 
of poles and residues, we further find that it is holomorphic in the direction of b2. Fix-
ing z1 − z2 ∈ C\(Z+ τZ) and letting z1 + z2 vary, we obtain a holomorhpic Jacobi 
form of index m[(1, 1)] = 0. By the classical theory of Jacobi forms—see, for example, 
Theorem  1.2 of  [14]—it is constant. This establishes the splitting of the two-variable  
µ̂-function.

Fourier expansions

Fourier expansions are crucial to understand further properties of H-harmonic Maaß-Jac-
obi forms, even more so, since they allow us to reason about restrictions. Any term of the 
Fourier expansion is indexed by n ∈ R and r ∈ L∨R. The overall situation is similar to the 
case of scalar Jacobi indices: the space of Fourier coefficients c(n, r; y, v)qnζ r that are anni-
hilated by CJ and �JH[b] for b ∈ B, B ⊆ P(LR) is finite dimensional, if spanB = LR.

Maaß-Jacobi forms with non-moving singularities admit a local Fourier expansion as 
explained in Ref. [6]. For φ ∈ MJ

H[B]
k ,L , we denote it by

Note that, if L is degenerate, then L∨ cannot be canonically identified with a subspace 
of LQ, as is common otherwise.

Propositions  3.6 and  3.9 allow us to focus on B ⊆ P(LR) that consists of mutually 
orthogonal, negative vectors, and Bhol ⊆ P(LR) which is orthogonal to B and contains no 
isotropic vectors. Our goal is to describe (3.6) explicitly

(3.5)µ̂(τ , z1, z2)−
ζ(τ , z1)− ζ(τ , z2)+ ζ(τ , z1 − z2)

θ(τ , z1 − z2)

(3.6)
φ(τ , z) =

∑

n∈Z,r∈L∨
c(φ; n, r; y, v) qnζ r .
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We split z ∈ LC into zhol ∈ span Bhol, z0 ∈ L0 ⊗ C, and zb = �z, b�L b/2L[b] ∈ Cb for 
b ∈ B, such that z = zhol + z0 +

∑
b zb.

Besides the holomorphic terms, two building blocks suffice to explicitly describe Fou-
rier expansions. The function H, up to slight modifications, appeared in Ref.  [2] first. It 
is usually employed to describe Fourier expansions of harmonic weak Maaß forms. The 
function HH[b], adopted from Ref. [6], is adjusted to the setting of lattice indices. It fea-
tures the lower incomplete gamma function γ (s, y) =

∫ y
0 ts−1e−t dt. We set

If the integral representation for H does not converge, we mean its analytic continuation 
with respect to k. If D < 0, one of the special functions above simplifies, and we find that

where Ŵ(s, y) =
∫∞
y ts−1e−t dt is the upper incomplete gamma function.

Given n ∈ R and r ∈ L∨R, we call

the discriminant of (n, r). We suppress the dependence of DL(n, r) on L, n, and r, which 
will be clear from the context.

As an important side product to our study of Fourier expansion, we obtain further 
restrictions on non-trivial H-harmonic Maaß Jacobi forms.

Proposition 3.11  Given an orthogonal set B ⊆ P(LR) of non-isotropic vectors, then we 
have

where B± = {b ∈ B : sgn(L[b]) = ±1}.

Proposition 3.12  Let φ ∈ MJ
� h[Bhol] h0 H[B]
k ,L  be an H-harmonic Maaß-Jacobi with local 

Fourier expansion as in  (3.6). With the same assumptions on Bhol and B as above, for 
fixed n and r, c(φ; n, r; y, v) it is an element of the complex vector space spanned by

φ ∈ MJ
h[Bhol] h0 H[B]
k ,L and for φ ∈ MJ

h[Bhol] h0 H[B]
k ,L .

(3.7)H(y;D) := e−y

∫ ∞

−2y
e−t t−k+l±/2 dt

∣∣∣
y=πDy/2|L|

, if D �= 0, |L| �= 0;

(3.8)H(y;D) := y−k+l±/2, if D = 0; and

(3.9)HH[b](y, v; r) := sgn
(
�v + ry, b�L

)
γ

(
1
2 , −π

�v + ry, b�2L
L[b]y

)
, if L[b] < 0.

H(y;D) = exp
(
−πDy/2|L|

)
Ŵ

(
1+ l±

2 − k , −Dy/|L|
)
,

D = DL(n, r) := |L|
(
4n− L[r]

)

MJ
H[B]
k ,L = MJ

h[B+]H[B−]
k ,L ,

(3.10)

∏

b∈B′
HH[b](y, v; r), and H(y;D)

∏

b∈B′−

HH[b](y, v; r), for some B′ ⊆ B.
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Analogously, local Fourier expansions of φ ∈ MJ
� h[Bhol h0 H[B]
k ,L  lie in the space spanned by

The proof of Proposition 3.12 is a complicated calculation, the parts of which we split up 
into three separate propositions.

Proposition 3.13  Given b ∈ LR that is is not isotropic, and a smooth function a, we have

where �1/2 is the classical weight  12 Laplace operator defined in  (2.10). Every solu-
tion to �JH[b] can be written as a function depending on L, b, y, and  v only by means 
of �v, b�2L/4|L[b]|y.

More specifically, in the case of L[b] < 0 solutions to �JH[b] a(y, v; r) ζ r for some r ∈ L∨R 
are linear combinations of the constant function and

Proposition 3.14  Let  B be as above, and fix n ∈ R and r ∈ L∨R. Given solutions 
ab(y, 〈v, b〉L) to the differential equations

set aB(y, v) =
∏

b∈B ab(y, �v, b�L). Then the differential equations

are both equivalent to

Proposition 3.15  Given b ∈ LR that is not isotropic, let a(y, v) be a real smooth func-
tion that is annihilated by �JH[b]. Then, ξ JH[b]

L a(y, v) is constant, and ξ Jk ,L a(y, v) = 0. 
More specifically, if L[b] < 0 then

Proofs of Proposition 3.13, 3.14, and 3.15 can be found below.

Proof of Proposition 3.11  Assume that there is some φ ∈ MJ
H[B]
k ,L  and some b ∈ B+ such 

that ξ JH[b]
L φ �= 0. We choose a maximal subset B̃ of B that contains b and satisfies

(3.11)

e(2r(iv0))
∏

b∈B′
HH[b]

(y, v; r), and H(y;D) e(2r(iv0))

∏

b∈B′−

HH[b]
(y, v; r), for some B′ ⊆ B.

�JH[b] a

(
�v, b�2L
4|L[b]| y

)
=

|L[b]| � 1
2
a(y)e

(
sgn(L[b])τ

)

y e
(
sgn(L[b])τ

)
∣∣∣∣
y= �v,b�2L

4|L[b]|y

,

a(y, v; r) = sgn
(
�v + ry, b�L

)
γ

(
1
2 , −π

�v + ry, b�2L
L[b]y

)
.

�JH[b] ab(y, �v, b�L) ζ r = 0, b ∈ B,

C
J
k ,L a(y)aB(y, v) q

nζ r = 0 and C
J
k ,L a(y)e(2r(iv0))aB(y, v) q

nζ r = 0

�k−l±/2 a(y)q
D/4|L| = 0.

ξ
JH[b]
L HH[b](v, y; 0) = 2

√
π .
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By Propositions 3.4 and 3.15, this is a non-trivial skew Jacobi form. Further, by Proposi-
tion 2.6, it cannot have any singularity in direction of b, which by a standard argument 
contradicts L[b] > 0. For details, the reader is referred to Theorem 1.2 in [14]. It should 
be kept in mind that we use opposite signs for Jacobi indices.�  �

Proof of Proposition  3.12  Proposition  3.11 allows us to focus on the case B = B−. 
Applying Proposition 3.13 to the case of negative L[b] shows that any Fourier expansion 
is of the form

Then Proposition 3.14 establishes the statement.�  �

Proof of Proposition  3.13  Recall that �JH[b] = −iy
(
i∂z(b)− 2πy−1 �· , v�L

)
∂z(b). A 

straightforward computation yields

On the other hand, � 1
2
= 4y2∂τ ∂τ − iy∂τ , from which we get

This completes the proof of the first part. The second part follows by combining the 
covariance of �HJ[b] with respect to the action of G(J L) and

Proof of Proposition 3.14  Invariance of CJk ,L and �JH[b] under the action of the real Jac-
obi group implies that we can restrict ourselves to the case r = 0. Further, it suffices to 
treat the case of non-degenerate lattices L, since derivatives with respect to L0 ⊗ R do 
not occur in CJ. Then, D/4|L| = n.

We first deduce three relations of differential operators, which hold under the mere 
assumption that L[b] �= 0 for all b ∈ B. Sums and products in these formulas, if not indi-
cated differently, run over elements in B. Since L[b] �= 0, Proposition  3.13 implies that 
ab(y, v) = ãb

(
�v, b�2L/2|L[b]|y

)
 for some suitable function ãb. We deduce that ∂y ab(y, v) equals

ξ
JH[B̃]
L φ �= 0.

a(y)
∏

b∈B−

HH[b](y, v; r).

�JH[b] a

(
�v, b�2L
4L[b]y

)
=

�v, b�2L
4y

a′′
(
�v, b�2L
4L[b]y

)
+

(
|L[b]|
2

−
π�v, b�2L

sgn(L[b])y

)
a′
(
�v, b�2L
4L[b]y

)
.

� 1
2
a(y)e

(
sgn(L[b])τ

)
=

(
y2 a′′(y)+

( y
2 − 4πsgn(L[b])y2

)
a′(y)

)
e
(
sgn(L[b])τ

)
.

� 1
2
γ
(
1
2 , 4πy

)
e(−τ ) = 0.

�

(3.12)

−�v, b�2L
4|L[b]|y2

ã′b

(
�v, b�2L
4|L[b]|y

)
=

−�v, b�L
4L[b]y

�v, b�L
sgn(L[b])y

ã′b

(
�v, b�2L
4|L[b]|y

)
=

−�v, b�L
4L[b]y

∂v(b)ab(y, v).
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Applying Relation (3.12) to 
∏

ab(y, v) and using orthogonality of B, we find that

In addition, using the equation �JH[b]ab(y, v) = 0, we infer that

The actual proof of Proposition  3.14 is a computation, which we start by expanding 
Equation (2.14) for CJ with respect to derivatives ∂τ and ∂τ  that are applied to the factor 
a(y)qn.

To establish the proposition, it suffices to show that the sum of the last five terms (3.16) 
through (3.20) vanishes.

The sum of (3.16) and (3.17) equals

by Relation (3.13). In the term (3.18), terms involving a′(y) cancel. To treat the derivative 
L[∂v] applied to 

∏
ab(y, v), we recall one elementary fact. Since B consists of mutually 

orthogonal vectors, we have

(3.13)∂y
∏

b∈B
ab(y, v) =

∑

b∈B

−�v, b�L ∂v(b)
4L[b]y

∏

b̃∈B

a
b̃
(y, v)

(3.14)

∂2y

�

b∈B
ab(y, v) =


 �

b,b′∈B

�v, b�L�v, b′�L ∂v(b) ∂v(b′)
16L[b]L[b′]y2

+
�

b∈B

�v, b�L ∂v(b)
4L[b]y2


 �

b̃∈B

a
b̃
(y, v).

(3.15)∂v(b)
2 av(y, v) =

4π �v, b�L ∂v(b)
y

ab(y, v).

(3.16)

C
J
k ,L a(y)q

n
∏

b

ab(y, v) = −2
(
�k−l±/2 a(y)q

n
)∏

b

ab(y, v)

− 8y2
(
∂τ a(y)q

n
)
∂τ

∏

b

ab(y, v)

(3.17)− 8y2
(
∂τ a(y)q

n
)
∂τ

∏

b

ab(y, v)

(3.18)+ y2

π i

((
∂τa(y)q

n
)
L[ i2∂v] +

(
∂τa(y)q

n
)
L[−i

2 ∂v]
) ∏

b

ab(y, v)

(3.19)− 8y
(
∂τ a(y)q

n
)
�v, ∂z�L

∏

b

ab(y, v)

(3.20)+ a(y)qn C
J
k ,L

∏

b

ab(y, v).

−2y2
(
2a′(y)qn − 4πn a(y)qn

)
∂y

∏

b∈B
ab(y, v) = y

(
a′(y)− 2πn a(y)

)
qn

∑

b∈B

�v, b�L ∂v(b)
L[b]

∏

b̃∈B

a
b̃
(y, v)

(3.21)

∂v
∏

b∈B
ab(y, v) =

∑

b∈B

�b, · �L
2L[b]

∂v(b)
∏

b̃∈B

a
b̃
(y, v).
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Since L[�b, · �L] = 4L[b], we find that (3.18) yields

by Relation (3.15). Finally, the term (3.19) can be expanded in a straightforward way:

By what we have computed so far, we see that (3.16) + (3.17) + (3.18) + (3.19) = 0.
To prove the proposition, we are therefore reduced to showing that  (3.20) vanishes. 

This, in turn, is the same as showing that CJk ,L
∏

b ab(y, v) = 0. Considering expres-
sion (2.8) for CJk ,L, we see that no terms involving ∂u contributes. The second term in (2.8) 
does not contribute either, because ∂τ and ∂τ  cancel each other. The order four term 
in (2.8) also does not contribute, as is easily seen by means of (3.21).

We are left with the following expression for CJk ,L
∏

ab(y, v), which originates in the 
first, third, seventh, and eighth term of (2.8).

We simplify it by employing (3.13), (3.14), and (3.21). It suffices to show vanishing of:

The first, the order 2 contribution of the fourth, and the fifth term cancel. The order 1 
contribution of the fourth term is 

∑
b�b, v�L∂v(b)/2L[b], so that the remaining terms also 

cancel. This completes the proof.�  �

Proof of Proposition 3.15  The statement on ξ J is a consequence of (3.21) in the proof of 
Proposition 3.14.

Our proof of the first statement on ξ JH[b] uses Proposition  3.13. Let a(y) be a solu-
tion to the differential equation � 1

2
a(y)e

(
sgn(L[b])τ

)
. If a(y) �= 1, we can choose a scalar 

multiple of a(y) in such a way that

The proposition then follows from a straightforward computation. 

−ny2

2
a(y)qn L[∂v]

∏

b∈B∈B
ab(y, v) =

−ny2

2
a(y)qn

∑

b∈B

4L[b]
4L[b]2

∂v(b)
2
∏

b̃∈B

a
b̃
(y, v)

= −2πnya(y)qn
∑

b∈B

�v, b�L ∂v(b)
L[b]

∏

b̃∈B

a
b̃
(y, v)

−y
(
a′(y)− 4πn a(y)

)
qn

∑

b∈B

�v, b�L ∂v(b)
L[b]

∏

b̃∈B

a
b̃
(y, v).

(
−2y2∂2y − (2k − l±)y∂y − 2y∂y�v, ∂v�L − 1

2
�v, �v, ∂v�L, ∂v�L − 2k−l±−1

2
�v, ∂v�v

) ∏

b∈B
ab(y, v).

−
∑

b,b′

�v, b�L�v, b′�L ∂v(v) ∂v(b′)
8L[b]L[b′]

−
∑

b∈B

�v, b�L ∂v(b)
2L[b]

+ (2k − l±)
∑

b∈B

�v, b�L ∂v(b)
4L[b]

+
∑

b,b′∈B

�b′, v�L∂v(b′)
2L[b′]

�b, v�L ∂v(b)
2L[b]

−
1

2

∑

b,b′∈B

�b, v�L�b′, v�L ∂v(b)∂v(b′)
4L[b]L[b′]

−
2k − l± − 1

2

∑

b∈B

�v, b�L ∂v(b)
2L[b]

.

ξ 1
2
a(y)e

(
sgn(L[b])τ

)
= e

(
− sgn(L[b])τ

)
, therefore a′(y) = y

−1
2 exp

(
4π sgn(b) y

)
.

�
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Indefinite theta series
In this section, we slightly generalize the results of Chapter  2 of  [34]. Zwegers defined 
indefinite theta series for lattices of signature (r + 1, 1), r ≥ 0. These theta series are 
H-harmonic, as can be deduced from Proposition  3.12. Zwegers also remarked that his 
construction generalizes to arbitrary, non-degenerate lattices. Here, we make a small step 
toward the most general type of indefinite theta series by considering the ones of product 
type (this terminology is explained in the introduction). In the previous section, we have 
seen that in our setting, we may only expect real analytic contributions from the nega-
tive definite part of L. Further, such real analytic terms in the H-harmonic setting must be 
associated with mutually orthogonal directions in L. One possibility for achieving this is by 
considering contribution from orthogonal subspaces of LR that have signature (1, 1). Many 
cases that we consider here could be alternatively constructed using products of Zwegers’s 
indefinite theta series. However, in “Reduction to smaller lattices”, we show that this is not 
always true. On the other hand, we would like to emphasize that the intention behind this 
section is not to construct all indefinite theta series. In fact, even when restricting to H
-harmonic indefinite theta series, the presented construction does not exhaust all cases. 
Rather, in the present section, we provide some non-trivial examples to bring the previ-
ously developed theory to life.

Throughout this section, we assume that L is non-degenerate. We repeat Zwegers’s 
construction on orthogonal pieces of signature (1, 1), given by a set

of size  l−. For any distinct pairs (c1, c2) and (c′1, c
′
2) in  C, we assume that span{c1, c2} 

is orthogonal to span{c′1, c′2}. A set  C with this property will be called a (1,  1)-decom-
position of  L. As an obvious restriction on the existence of (1,  1)-decompositions, we 
have l+ ≥ l−. Indeed, span C ⊆ LR has signature (l−, l−).

To define the indefinite theta series, we need an analogue of Zwegers’s ρ function for 
c ∈ P(LR) with L[c] ≤ 0:

Definition 4.1  Let C be a (1,  1)-decomposition of L. The vector-valued (indefinite) 
theta series of L attached to C is defined by

Example 4.2  (Zwegers’s indefinite theta series for lattices of signature (r − 1, 1)) 
Zwegers analyzed indefinite theta series for Lorentzian lattices. For the time being, we 
adopt the notation from Chapter 2 of [34]. Starting with a quadratic space V of signature 
(r − 1, 1), r ≥ 2, we choose isotropic or negative vectors c1, c2 ∈ Rr. For any such choice, 
one obtains an indefinite theta series

C =
{
(c1, c2) ∈ P(LR)

2 : sgn
(
span{c1, c2}

)
= (1, 1), �c1, c2�L < 0

}

(4.1)
ρc
(
τ , z; ν

)
= sgn

(
�c, ν�L

)
, if L[c] = 0; and

ρc
(
τ , z; ν

)
= HH[c](y, v; ν), if L[c] < 0.

(4.2)
θCL (τ , z) =

∑

ν∈disc L
eν

∑

ν∈ν+L

e
(
L[ν]τ + �z, ν�L

) ∏

(c1,c2)∈C

(
ρc1 − ρc2

)
(τ , z; ν).

θ c1,c2(τ , z) =
∑

ν∈Zr

ρc1,c2
(
ν; τ

)
e
(
L[ν]τ + �z, ν�L

)
,
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where, in the present paper’s notation, we have

We can recover θ c1,c2 as the e0-component of θCL  with C = {(c1, c2)}, as long as c1 is not a 
multiple of c2. If c1 = c2 as elements of P(VR), then θ c1,c2 = 0.

Indefinite theta series have singularities, whose location is determined by the geom-
etry of C. We set

Proposition 4.3  Given a (1, 1)-decomposition of L, the theta series θCL  converges abso-
lutely and locally uniformly for any z ∈ D(C). It can be analytically continued to H(J L), 
except for non-moving singularities of almost meromorphic type.

The proof of Proposition  4.3 relies on a reduction to rational c1s and c2s. The next 
lemma allows us, in addition, to replace isotropic vectors by negative ones.

Lemma 4.4  Let C be a (1, 1)-decomposition of L. Fix (c1, c2) ∈ C such that for i = 1 and 
i = 2, we have Rci ∩ LQ = ∅ or L[ci] = 0. Then there is c̃ ∈ P(LQ) with L[c̃] < 0, such that 
both

are (1, 1)-decompositions of L.

Proof  We analyze the following Grassmannian of negative definite, rational subspaces

Since span {c1, c2} has signature (1, 1), (C\{c1, c2})⊥ has signature (l+ − l− + 1, 1). There-
fore, H is a manifold of dimension at least 1. By our assumption on c1 and c2, we find that 
Rc1,Rc2 �∈ H . It thus suffices to choose any Qc̃ ∈ H .�  �

The next proof is essentially due to Zwegers  [34]. A little care must be taken when 
splitting off span{c1, c2} for (c1, c2) ∈ C, and for this reason we give some details. For 
our purpose, it is also important that we prove that θCL  has non-moving singularities of 
almost meromorphic type. This fact was not mentioned in Ref. [34], even though it is 
immediate from the treatment given there.

Proof of Proposition 4.3  Using Lemma 4.4, we can successively write θCL  as the sum of 
θ C̃L s where for each (c1, c2) ∈ C̃ at least one of the cis is rational and negative. After swap-
ping c1 and c2 if necessary, we can thus assume without loss of generality that L[c1] < 0 
and c1 ∈ LQ for all (c1, c2) ∈ C.

It also suffices to show convergence for ν = 0. Indeed, given ν ∈ disc(L), we can 
replace z by z + ν for a representative ν of ν. The set D(C) remains unchanged under this 
substitution, since ν ∈ L∨.

Under these hypotheses, we can proceed in a similar way as Zwegers. It will be 
convenient to write z as a+ τb for a, b ∈ LR. In particular, we have v/y = a. Let 
β(y) =

∫∞
y t

−1
2 e−π t d t be the beta function. We have

ρc1,c2(ν; τ ) = ρc1
(
τ , z; ν

)
− ρc2

(
τ , z; ν

)
.

D(C) :=
{
(τ , z) ∈ H(J L) : �b1, v/y�L, �b2, v/y�L �∈ Z for all (b1, b2) ∈ C

}
.

(c̃, c2) ∪ C\{(c1, c2)} and (c1, c̃) ∪ C\{(c1, c2)}

H = Gr−
{
ν ∈ LQ : ∀(c′1, c′2) ∈ C , (c′1, c

′
2) �= (c1, c2) : �ν, c′i�L = 0

}
.



Page 28 of 34Westerholt‑Raum. ﻿Mathematical Sciences  (2015) 2:12 

So, up to scalar multiples of 
√
π , we can write ρc1 − ρc2 as a sum or difference of terms

We have to estimate the product 
∏

(c1,c2)
(ρc1 − ρc2). The orthogonality relation imposed 

on elements of  C allows us to focus on each term individually, so that Zwegers’s esti-
mates apply word by word for negative c1 or c2.

We can thus focus on the case that c1 ∈ LQ is negative and c2 is isotropic. For simplic-
ity, write C0 ⊆ C for the set (c1, c2) with isotropic c2. We discuss the contribution of the 
third term in (4.3) in more detail, since we need it to understand the singularities of θCL . 
We are free to replace c1 by a scalar multiple of itself without changing θCL . In particular, 
we may assume, by Lemma 4.4, that c1 ∈ L.

Given (c1, c2) ∈ C0, we decompose a+ ν = µ+ nc1 with n ∈ Z and 
0 ≤ �c2,µ�L < �c2, c1�L. As in the proof of Proposition 2.4 in [34], we can use the follow-
ing equality, since z ∈ D(C).

where δ(0) = 1 and δ(t) = 0 for t �= 0.
Because (c1, c2) ∈ C are mutually orthogonal, we can in fact decompose 

a+ ν = µ+
∑

(c1,c2)∈C0
nc1. By passing to the corresponding quotient of L, we see that

is finite. Up to sign, the contribution to θCL  under consideration thus equals

This reduces to convergence of θC\C0

L′  with L′ =
(
span{c1 : (c1, c2) ∈ C0}

)⊥, for which 
we have already referred the reader to Ref. [34]. From this point on, it is clear how to 
establish the convergence of θCL  as in Ref. [34].

HH[c](y, v; ν) =
√
π sgn

(
�a+ ν, c�L

) (
1− β

(
− y �a+ ν, c�2L/L[c]

))
.

(4.3)

sgn
(
�a+ ν, c1�L

)
β
(
− y�a+ ν, c1�2L/L[c1]

)
,

sgn
(
�a+ ν, c2�L

)
β

(
− y�a+ ν, c2�2L/L[c2]

)
, and

sgn
(
�a+ ν, c1�L

)
− sgn

(
�a+ ν, c2�L

)
.

(4.4)

∑

n ∈ Z
(c1, c2) ∈ C

(
sgn(�µ, c2�L)− sgn

(
n+

�µ, c1�L
�c1, c2�L

))
e(�µ, c2�nτ + �b, c2�n)

=
2

1− e(�µ, c2�Lτ + �b, c2�L)
− δ(�µ, c1�L),

M(C0) =
{
µ ∈ a+ L : ∀(c1, c2) ∈ C0 : 0 ≤ �c2,µ�L < �c2, c1�L

}
/

(
span{c1 : (c1, c2) ∈ C0}

)⊥

(4.5)

∑

µ ∈ M(C0)

ν ∈ (span{c1 : (c1, c2) ∈ C0})⊥

e
(
L[µ+ ν]τ + �z,µ+ ν�L

) ∏

(c1,c2)∈C\C0

(
ρc1 − ρc2

)
(τ , z,µ+ ν)

×
∏

(c1,c2)∈C0

(
2

1− e
(
�µ+ ν, c2�Lτ + �b, c2�L

) − δ
(
�µ, c1�L

)
)
.
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We are left with proving that θCL  has non-moving singularities of almost meromor-
phic type. Observe that  (4.4) can be continued to all except, finally, many b (mod L). 
Therefore, singularities of (4.5) arise from products of meromorphic functions with real-
analytic ones. This completes the proof. 

We can go one step beyond Proposition 4.3, by establishing uniform convergence. The 
next lemma will help us to prove Theorem 4.6.

Lemma 4.5  Fix a (1,  1)-decomposition  C of  L, and one pair (c1, c2) ∈ C. Let c̃ be a 
continuous function c̃ : [0,∞)→ span{c1, c2}. Assume that L[c̃(t)] < 0, L[c2] = 0, and 
c̃(0) = c2, and that span{c1c̃(t)} has signature (1, 1) for all t > 0.

Set C(t) = {(c̃(t), c2)} ∪ C\{(c1, c2)}. Then, limt→0 θ
C(t)
L = θCL .

Proof  The proof of Proposition 2.7  (4) in  [34] applies almost word by word. We give 
some details for convenience.

In analogy to the proof of Proposition 4.3, we can assume that ν = 0. Zwegers’s argu-
ment that we can restrict to the situation where c1 = c2 and span{c1, c̃(t)} are constant 
for all t > 0 c̃(t) can be transferred to our setting without difficulty. We thus have to 
show that

Writing ρc1 − ρ c̃(t) as a sum of

we are reduced to two separate cases. It suffices to apply the inequalities

and

for a suitable quadratic form L̃, which depends on �c1, a+ ν�L and �c2, a+ ν�L. Both esti-
mates were literally established by Zwegers. We close by revisiting the construction of L̃.

Zwegers splits up the set L into three smaller ones, which he calls P1, P2, and P3. 
With P1 and P2, one quickly obtains a majorant; on P3 however, one needs to use addi-
tional vectors c̃1 = �c1,c2�L

2L[c1] c1 − c2 and c̃2 = −c2 and a quadratic form

�

∑

ν∈ν+L

e
(
L[ν]τ + �z, ν�L

) ∏

(c′1,c
′
2)∈C(t)

(
ρc′1 − ρc′2

)
(τ , z; ν)−→0 as t→0.

sgn
(
�a+ ν, c̃(t)�L

)
β
(
− y�a+ ν, c̃(t)�2L/L[c̃(t)]

)
and

sgn
(
�a+ ν, c1�L

)
− sgn

(
�a+ ν, c̃(t)�L

)
,

∣∣∣sgn
(
�a+ ν, c1�L

)
− sgn

(
�a+ ν, c2�L

)∣∣∣ ≤
∣∣∣sgn

(
�a+ ν, c1�L

)
− sgn

(
�a+ ν, c̃(t)�L

)∣∣∣,

∣∣∣β
(
− y�a+ ν, c̃(t)�2L/L[c̃(t)]

)
e
(
L[a+ ν]τ + �a+ ν, z�L

)∣∣∣ ≤ e
(
L̃[a+ ν]τ + �a+ ν, z�L̃

)

L̃[ν] = L
[
ν⊥

]
−

�c2, ν�L
(
�c1, c2�L�c1, ν�L − L[c1]�c2, ν�L

)

�c1, c2�2L
.
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The concrete estimate in the last case is involved, but we nevertheless urge the reader to 
consult [34] on this matter. 

If L is an integral lattice, then we immediately see that θCL  is invariant under the action 
of the Heisenberg group in Ŵ(J L). The correct transformation behavior with respect 
to SL2(Z) can be inferred, again, in the same way as in  Ref. [34]. Zwegers, however, 
reminded the author of Vignéras’s results [30], which we wrote in a particularly neat way.

Theorem 4.6  For every L and every C, the theta series θCL  transforms like a Jacobi form 
of weight l/2, index L, and type ρJ

L with respect to the action of SL2(Z) ⊂ Ŵ(J L).

Corollary 4.7  Suppose that L is an even lattice, then the theta series θCL  transforms like 
a Jacobi form of weight l/2, index L, and type ρJ

L. If L[c2] = 0 for all (c1, c2) ∈ C, then

Proof of Theorem 4.6  In light of Lemma 4.5, we can reduce ourselves to the case that c1 
and c2 are negative for all (c1, c2) ∈ C. The estimates in Proposition 4.3, i.e., in Proposi-
tion 2.4 of [34], show that

is of exponential decay. In particular, it is integrable and square integrable with respect 
to ν, and so are its differentials and products with arbitrary polynomials in ν. Vignéras 
states that θCL  is modular, if the above term at y = 1 is annihilated by 1

4π �L − EL, where 
�L is the Laplace operator attached to L and EL is the corresponding Euler operator. One 
verifies that this, up to scalar constants, equals 〈RJH, LJH〉L restricted to y = 1.

It suffices to verify the differential equation after expanding the product over C. So, fix 
ij ∈ {1, 2} for 1 ≤ j ≤ l− and set B = {cij : (c1, c2) ∈ C}. Then,

By construction, 
∏

b∈B ρ
b has H- harmonicity B, and this completes the proof.�  �

Reduction to smaller lattices

The relation between indefinite theta series of product type and products of indefinite 
theta series is not quite obvious. We give a sufficient criterion that asserts splitting into 
more than one factor. It is crucial to note that in the assumptions of the next proposition, 
we intersect the span of Cj ⊂ C with a rational subspace of L.

Proposition 4.8  Let L and C be as above. Suppose that C can be written as a disjoint 
union of Cj, with 1 ≤ j ≤ lC. Suppose that further LQ ⊃

⊕lC
j=1 Lj for lattices Lj such that 

l =
∑

j lj. If spanCj ∩ Lj,Q = Lj,Q, then

�

θCL ∈ MJ
H[B]
l
2 ,L

(ρL), where B = {c1 : (c1, c2) ∈ C}.

e
(
L[ν]τ + �z, ν�L

) ∏

(c1,c2)∈C

(
ρc1 − ρc2

)
(τ , z; ν)

〈
RJH, LJH

〉
L
=

〈
RJH, LJH

〉
(span B)⊥

+
∑

b∈B
�JH[b].

πL

(⊕
θ
Cj

Lj

)
= θCL ,
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where πL is the natural projection of 
⊗

j ρLj onto ρL that is induced by the inclusion 
disc(L) ⊆

⊗
disc(Lj).

Proof  It is clear how to reduce ourselves to the case that L =
⊕

j Lj by means of the 
projection πL. Then it suffices to inspect the definition (4.2) of θCL , to prove the proposi-
tion.�  �

We give two examples of indefinite theta series, which illustrate extreme cases that can 
occur. Both are attached to the same lattice of signature (2, 2), but we use different C. 
The first one is a product of two indefinite theta series, and the second one cannot pos-
sibly split.

Example 4.9  Let L0 be the lattice with Gram matrix 
(
2 0
0 −2

)
, and set L = L0 ⊕ L0. To 

simplify the notation, we further fix the corresponding bases and coordinates z1, z2 and 
z1, z2, z3, z4 for z, respectively. +

(1)	� Set c0,1 = (−1, 1), c0,2 = (0, 1), and C0 = {(c0,1, c0,2)}. We consider the product 
of two of Zwegers’s indefinite theta series attached to L0 and C0. It yields an H
-harmonic Maaß-Jacobi form: 

 �Its H- harmonicity is B = {(0, 1, 0, 0), (0, 0, 0, 1)}, and it is a product of two 
indefinite theta series.

(2)	� The same lattice L allows for an indefinite theta series that is not a product 
(but per terminology is of product type). 

 �This theta series is H-harmonic, because (1, 1,π2,π2) and (π2,π2, 1, 1) are iso-
tropic. To check that it cannot split as a product, it suffices to observe that 

 has dimension 0, while the vectors in C span LR.

Remark 4.10  The preceding example makes clear that one has to carefully distinguish 
between the product of the indefinite theta series and the indefinite theta series of the 
product type. The latter terminology can be explained by alluding to a yet to be devel-
oped adelic theory of mock theta series. At ∞, such a theory should not distinguish 
between the two concepts, and the difference that was showcased in Example 4.9 should 
originate in the finite places. This also explains why there is such a huge overlap between 
the proofs here and those in Ref. [34]. Convergence and even modularity of theta series 
is mostly an issue that can be handled “at the infinite places”.

Theta‑like decompositions
We conclude this work with a theta-like decomposition for H-harmonic Maaß-Jacobi 
forms. Generalized µ̂ functions play the role of θ functions.

θCL (τ , z) = θ
C0
L0

(τ , z1, z2) · θC0
L0

(τ , z3, z4) with

C =
{(

(−1, 1, 0, 0), (0, 1, 0, 0)
)
,
(
(0, 0,−1, 1), (0, 0, 0, 1)

)}
.

θCL (τ , z) with C =
{(

(1, 1,π2,π2), (1,π2, 1,π)
)
,
(
(π2,π2, 1, 1), (1,π , 1,π2)

)}
.

span
R

{
(1, 1,π2,π2), (1,π2, 1,π)

}
∩ LQ
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Generalized µ̂‑functions

Indefinite theta series can be used to obtain preimages of skew theta series under ξ JH[B]
L . 

This construction, in the case of l− = 1, should be somewhat known to experts. We write 
�· , eν�e for the ν- th coordinate of a vector-valued function. Given a negative definite, even 
lattice L and an orthogonal basis B of L, we define

where C = { ((b, 0), (b, b)) : b ∈ B }. Clearly, (0,  b) is negative defi-
nite, while (b,  b) is isotropic. Singularities of θCL⊕L(−1)(τ , (z, 0)) lie outside of 
D(B) = {(τ , z) ∈ H(J L) ; �b, v/y�L �∈ Z for all b ∈ B}.

Proposition 5.1  Given L and B as above, we have

Proof  It suffices to determine the image of ρc in  (4.1) under ξ JH[b]
L . This was done in 

Proposition 3.15. � �

Theorem 5.2  Suppose that L = L′ ⊕
⊕

b∈B Zb. Then we have

Remark 5.3 

(1)		� The condition that L be L′ ⊕
⊕

Zb might seem surprisingly restrictive. However, 
for every lattice L and every B ⊆ P(LQ) we can pass to such a situation by con-
sidering suitable suplattices L⊥ ⊇ L in conjunction with the theory of vector-val-
ued Jacobi forms. On the other hand, overlapping singularities of meromorphic 
Jacobi forms in decomposition (5.2) hinder us from passing back from L⊥ to L.

(2)		� A similar decomposition can be found for MJ
h0H[B]
k ,L  and MJ

h0H[B]
k ,L , in the case of 

degenerate L.

Proof of Theorem  5.2  The theorem follows by induction: by applying ξ JH[B] to 
φ ∈ MJ

H[B]
k ,L  to obtain a vector-valued meromorphic Jacobi form by means of the partial 

theta decomposition Proposition 2.7. Using µ̂B
L , we can find an H-harmonic Maaß-Jacobi 

form ψ that has the same image under ξ JH[B] as φ. Thus, the difference φ − ψ is a sum of 
H-harmonic Maaß-Jacobi forms with H-harmonicities B′, #B′ < #B. This completes the 
proof.� �

Restriction to torsion points

To formulate the final corollary, we have to define harmonic weak Maaß forms of higher 
depth. It does not seem adequate to employ the generally preferable language of vector-
valued modular forms. Technicalities would require an extra exposition. Therefore, given 

(5.1)µ̂B
L(τ , z) =

∑
ν∈disc L eν �θCL⊕L(−1)(τ , (z, 0)), eνe0�e

�θL(−1)(τ , 0), e0�e
,

ξ
JH[B]
L µ̂B

L = 2
√
π θ

span B
L .

(5.2)
MJ

H[B]
k ,L =

∑

B′⊆B

〈
µ̂B′
L , MJk−#B′/2, (span B′)⊥

(
ρspanB′

)〉
.
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Ŵ ⊆ SL2(Z), we set M[0]
k (Ŵ) = Mk(Ŵ). For depth d ≥ 1, we let M[d]

k (Ŵ) be the space of 
real-analytic functions  f : H→C that

(i)		  are invariant under the weight k slash action of Ŵ;
(ii)		 whose image under ξk lies in 

∑
l Ml(Ŵ)⊗M

[d−1]
k−l (Ŵ);

(iii)	 satisfy the growth condition  f (iy) = O(eay) as y→∞ for some a ∈ R.

The definition of higher depth harmonic weak Maaß forms goes back to Zagier and 
Zwegers, but currently there is no literature on it.

Corollary 5.4  Suppose that (τ ,ατ + β) for α,β ∈ 1
N L is not a singularity of φ ∈ MJ

H[B]
k ,L .  

Then we have

where Ŵ(N ) is the principal congruence subgroup of level N.

Remark 5.5  The statement could be refined even more by specifying that each time we 
apply ξ to the restriction of an H-harmonic Maaß-Jacobi form, a unary theta series splits off.

Proof  The transformation behavior is clear. The analytic properties follow from 
restricting to torsion points the Fourier expansions in Proposition 3.6. � �

Endnotes
aZagier’s formula has a sign mistake, as one referee pointed out. Following that referee’s 
suggestion, we sketch a proof in Example 3.10.

bThere is no definition of higher depth harmonic weak Maaß forms in the literature, 
but it has been communicated by Zagier and Zwegers in some talks.

Acknowledgements
The author thanks Kathrin Bringmann, Olav Richter, and Sander Zwegers for helpful discussions and for their remarks. He 
is especially grateful to one of the referees who helped with his comments to work around some stylistic glitches.

Compliance with ethical guidelines

Competing interests
The author declares that they have no competing interests.

Received: 13 April 2015   Accepted: 21 May 2015

References
	1.	 Bringmann, K., Creutzig, T., Rolen, L.: Negative index Jacobi forms and quantum modular forms. Res. Math. Sci. 

(2014). doi:10.1186/s40687-014-0011-8
	2.	 Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125(1), 45–90 (2004)
	3.	 Bringmann, K., Mahlburg, K., Rhoades, R.C.: Taylor coefficients of mock-Jacobi forms and moments of partition statis‑

tics. Math. Proc. Cambridge Philos. Soc. 157(2), 231–251 (2014). doi:10.1017/S0305004114000292
	4.	 Bringmann, K., Olivetto, R.: Kac-Wakimoto characters and non-holomorphic Jacobi Forms. Bringmann’s homepage. 

Trans. Am. Math. Soc. (to appear) (2015)

(
φ
∣∣
k ,L

((1 0
0 1

)
, α,β

))
(τ , 0) ∈ M

[#B]
k

(
Ŵ(N )

)
,

http://dx.doi.org/10.1186/s40687-014-0011-8
http://dx.doi.org/10.1017/S0305004114000292


Page 34 of 34Westerholt‑Raum. ﻿Mathematical Sciences  (2015) 2:12 

	5.	 Bringmann, K., Richter, O.K.: Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms. Adv. Math. 
225(4), 2298–2315 (2010)

	6.	 Bringmann, K., Raum, M., Richter, O.K.: HarmonicMaass-Jacobi forms with singularities and a theta-like decomposi‑
tion. arXiv:1207.5600 (2012)

	7.	 Bringmann, K., Raum, M., Richter, O.K.: Kohnen’s limit process for real-analytic Siegel modular forms. Adv. Math. 
231(2), 1100–1118 (2012)

	8.	 Bruinier, J.H.: Borcherds products on O(2, l ) and Chern classes of Heegner divisors. Lecture Notes in Mathematics, 
vol. 1780. Springer, Berlin (2002)

	9.	 Bringmann, K., Rolen, L., Zwegers, S.: On the Fourier coefficients of negative index meromorphic Jacobi forms. vol 6. 
arXiv:1501.0447 (2015)

	10.	 Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group, vol. 163. Progress in mathematics. 
Birkhäuser, Basel (1998)

	11.	 Conley, C., Raum, M.: Harmonic Maaß-Jacobi forms of degree 1 with higher rank indices. arXiv:1012.2897 (2010)
	12.	 Duke, W., Imamoğlu, Ö., Tóth, Á.: Cycle integrals of the j-function andmock modular forms. Ann. Math. (2) 173(2), 

947–981 (2011)
	13.	 Dabholkar, A., Murthy, S., Zagier, D.B.: Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074 

(2012)
	14.	 Eichler, M., Zagier, D.B.: The theory of Jacobi forms, vol. 55. Progress in Mathematics. Birkhäuser Boston Inc., Boston 

(1985)
	15.	 Göttsche, L., Zagier, D.B.: Jacobi forms and the structure of Donaldson invariants for 4-manifolds with b+ = 1. 

Selecta Math. (N.S.) 4(1), 69–115 (1998)
	16.	 Helgason, S.: Differential operators on homogenous spaces. Acta Math. 102(3), 239–299 (1959)
	17.	 Hikami, K., Lovejoy, J.: Torus knots and quantum modular forms. Res. Math. Sci. 2, 2 (2015). doi:10.1186/

s40687-014-0016-3
	18.	 Kohnen, W.: Nonholomorphic Poincaré-type series on Jacobi groups. J. Number Theory 46(1), 70–99 (1994)
	19.	 Kac, V.G., Wakimoto, M.: Integrable highest weightmodules over affine superalgebras and Appell’s function. Com‑

mun. Math. Phys. 215(3), 631–682 (2001)
	20.	 Kac, V.G., Wakimoto, M.: Representations of affine superalgebras andmock theta functions III. vol. 7. arXiv:1505.0104 

(2015)
	21.	 Lau, S.C., Zhou, J.: Modularity of open Gromov-Witten potentials of elliptic orbifolds. arXiv:1412.1499 (2014)
	22.	 Maass, H.: Lectures on modular functions of one complex variable. Notes by Sunder Lal. Tata Institute of Fundamen‑

tal Research Lectures onMathematics, No. 29. Tata Institute of Fundamental Research, Bombay (1964)
	23.	 Oberdieck, G.: A Serre derivative for even weight Jacobi Forms. arXiv:1209.5628 (2012)
	24.	 Pitale, A.: Jacobi Maaß forms. Abh. Math. Semin. Univ. Hambg. 79(1), 87–111 (2009). doi:10.1007/s12188-008-0013-9
	25.	 Ramanujan, S.: Collected papers of Srinivasa Ramanujan. In: Hardy, G.H., Seshu Aiyar, P.V., Wilson, B.M. (eds.) Third 

printing of the 1927 original, With a new preface and commentary by Bruce C. Berndt. AMS Chelsea Publishing, 
Providence (2000)

	26.	 Raum, M.: Dual weights in the theory of harmonic Siegel modular forms. PhD thesis. University of Bonn (2012)
	27.	 Rolen, L.: A new construction of Eisenstein’s completion of theWeierstrass zeta function. vol. 7. arXiv:1504.0378 

(2015)
	28.	 Skoruppa, N.P.: Jacobi forms of critical weight and Weil representations. Modular forms on Schiermonnikoog. Cam‑

bridge Univ. Press, Cambridge (2008)
	29.	 Skoruppa, N.P.: Developments in the theory of Jacobi forms. Automorphic functions and their applications 

(Khabarovsk, 1988). Khabarovsk Acad. Sci. USSR Inst. Appl. Math. (1990)
	30.	 Vignéras, M.F.: Séries thêta des formes quadratiques indéfinies. Séminaire Delange-Pisot-Poitou, 17e année 

(1975/76), Théorie des nombres: Fasc. 1, Exp. No. 20. Secrétariat Math., Paris (1977)
	31.	 Zagier, D.: Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann). Séminaire 

Bourbaki. vol. 2007/2008. Astérisque No. 326 (2009), Exp. No. 986, vii–viii, 143–164 (2010)
	32.	 Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)
	33.	 Zagier, D.: Modular forms and differential operators. Proc. Indian Acad. Sci. Math. Sci. 104(1), 57–75 (1994). 

doi:10.1007/BF02830874
	34.	 Zwegers, S.: Mock theta functions. PhD thesis. Universiteit Utrecht (2002)

http://arxiv.org/abs/1207.5600
http://arxiv.org/abs/1501.0447
http://arxiv.org/abs/1012.2897
http://arxiv.org/abs/1208.4074
http://dx.doi.org/10.1186/s40687-014-0016-3
http://dx.doi.org/10.1186/s40687-014-0016-3
http://arxiv.org/abs/1505.0104
http://arxiv.org/abs/1412.1499
http://arxiv.org/abs/1209.5628
http://dx.doi.org/10.1007/s12188-008-0013-9
http://arxiv.org/abs/1504.0378
http://dx.doi.org/10.1007/BF02830874

	H-Harmonic Maaß-Jacobi forms of degree 1
	Abstract 
	Background
	The definition of -harmonic Maaß-Jacobi forms
	Indefinite theta series
	Theta-like decompositions
	Splittings of -harmonic Maaß-Jacobi forms
	Restrictions to torsion points

	Preliminaries
	Lattices
	Jacobi forms
	Differential operators
	Harmonic weak Maaß forms
	Skew Jacobi forms

	-harmonic Maaß-Jacobi forms
	Various spaces of -harmonic Maaß-Jacobi forms
	The Heisenberg -operators
	Non-trivial -harmonicities are orthogonal
	Fourier expansions

	Indefinite theta series
	Reduction to smaller lattices

	Theta-like decompositions
	Generalized -functions
	Restriction to torsion points

	Endnotes
	Acknowledgements
	Received: 13 April 2015   Accepted: 21 May 2015References




